Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

Human mesenchymal stem cells (hMSCs) resulted from the following steps: each type of gold nanoparticles was added to hMSCs, and the treated cells were cultured for 3 weeks. The cells received either alkaline phosphatase (ALP) staining or alizarin red staining (ARS) of calcium phosphate deposits, both of which are osteogenic differentiation indicators. Control experiments with unmodified gold nanoparticles and untreated hMSCs were also carried out for comparison. In the upper images, ALP positive cells were stained purple while agglomerates of gold nanoparticles were detected as blue dots. In the lower images, spider-web-like red stains represent calcium phosphate deposits while bluish purple dots indicate agglomerates of gold nanoparticles. All scale bars are 500 μm.
Human mesenchymal stem cells (hMSCs) resulted from the following steps: each type of gold nanoparticles was added to hMSCs, and the treated cells were cultured for 3 weeks. The cells received either alkaline phosphatase (ALP) staining or alizarin red staining (ARS) of calcium phosphate deposits, both of which are osteogenic differentiation indicators. Control experiments with unmodified gold nanoparticles and untreated hMSCs were also carried out for comparison. In the upper images, ALP positive cells were stained purple while agglomerates of gold nanoparticles were detected as blue dots. In the lower images, spider-web-like red stains represent calcium phosphate deposits while bluish purple dots indicate agglomerates of gold nanoparticles. All scale bars are 500 μm.

Abstract:
Tissue Regeneration Materials Unit (Guoping Chen, Unit Director) at the International Center for Materials Nanoarchitectonics (MANA) (Masakazu Aono, Director General, MANA), NIMS (Sukekatsu Ushioda, President) successfully developed gold nanoparticles that have functional surfaces and act on osteogenic differentiation of stem cells.

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

Tsukuba, Japan | Posted on June 9th, 2015

In regenerative medicine, the technology to control stem cell functions such as differentiation and proliferation is indispensable. It has been reported that nanosized gold particles promote the differentiation of human mesenchymal stem cells into osteoblasts. Also, other studies suggested that various functional groups such as amino, carboxyl and hydroxyl groups promote or inhibit stem cell differentiation. Based on these reports, we assumed that gold nanoparticles with surface modified with functional groups is a promising candidate to control stem cell functions. However, specific effects of such particles on the differentiation of human mesenchymal stem cells was unknown.

We synthesized gold nanoparticles with surface modified with one of the following functional groups: a positively-charged amino group (-NH2), a negatively-charged carboxyl group (-COOH) or a neutral hydroxyl group (-OH), and identified how they affect the osteogenic differentiation of mesenchymal stem cells that were derived from human bone marrow. Among these three types of nanoparticles, those with the carboxyl groups were uptaken by cells and exhibited a strong bone differentiation-inhibitory effect compared to the other types of nanoparticles. Furthermore, we investigated the effect of gold nanoparticles with carboxyl groups on the gene expression profile of mesenchymal stem cell from human bone marrow. The results indicated that the nanoparticles inhibited several gene expressions related to osteogenic differentiation. Therefore, the influence of the gold nanoparticles on promoting or inhibiting osteogenic differentiation varied depending on the types of functional groups.

In view of regenerative medicine, it is essential to develop technology enabling controlling stem cell functions as well as safe and high-quality stem cells. In the present study, we attempted to control stem cell functions through material manipulation, and our findings will contribute to the creation of novel nanomaterials that facilitate the advancement of stem cell manipulation. We intend to build upon these results in our future endeavors in developing regenerative medicine.

####

About National Institute for Materials Science (NIMS)
Public research institution for materials science in Japan.

For more information, please click here

Contacts:
(Regarding this research)
Guoping Chen, Unit Director
Tissue Regeneration Materials Unit
International Center for Materials Nanoarchitectonics
National Institute for Materials Science

Tel: 029-860-4496

(Regarding public relations)
Public Relations Office
National Institute for Materials Science
1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, JAPAN
Tel: 029-859-2026, Fax: 029-859-2017

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project