Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Measuring the mass of molecules on the nano-scale: By observing the shift in eigenstates of coupled microcantilevers, researchers can measure nanogram-scale mass in a liquid environment with extreme accuracy

Coupled microcantilevers are placed on the XY-axis-stage and moved by the piezoelectric actuator according to the proposed feedback control to produce self-excited oscillation.
CREDIT: Yabuno Lab./University of Tsukuba
Coupled microcantilevers are placed on the XY-axis-stage and moved by the piezoelectric actuator according to the proposed feedback control to produce self-excited oscillation.

CREDIT: Yabuno Lab./University of Tsukuba

Abstract:
Working with a device that slightly resembles a microscopically tiny tuning fork, researchers at the University of Tsukuba in Japan have recently developed coupled microcantilevers that can make mass measurements on the order of nanograms with only a 1 percent margin of error -- potentially enabling the weighing of individual molecules in liquid environments. The findings are published this week in Applied Physics Letters, from AIP Publishing.

Measuring the mass of molecules on the nano-scale: By observing the shift in eigenstates of coupled microcantilevers, researchers can measure nanogram-scale mass in a liquid environment with extreme accuracy

Washington, DC | Posted on June 2nd, 2015

The group's coupled microcantilevers measure mass on the cellular and subcellular scale by using self-excited oscillation, a process in which the feedback of an oscillating body controls the phase of the power source acting on it, allowing for sustained periodic motion.

"Unlike the previous measurements made by coupled cantilevers, which can detect the existence of small mass but cannot quantitatively measure the mass, it doesn't require a special measurement environment, such as an ultrahigh vacuum," said Hiroshi Yabuno, a professor at the University of Tsukaba in Japan.

Yabuno's graduate students Daichi Endo and Keiichi Higashino performed the measurements, and Yasuyuki Yamamoto and Sohei Matsumoto, collaborators at the National Institute of Advanced Industrial Science and Technology, constructed the coupled microcantilevers using MEMS device manufacturing methods.

As all biological processes must take place in a liquid environment, this makes the group's cantilevers ideal for processes such as detecting DNA hybridization and characterizing, at the single cell level, whole proteomes -- data that shows globally within such a cell which proteins are expressed where and when as a result of instructions contained in an organism's DNA genome.

"From the features of the proposed method, it's easy to expect that we can obtain the same accuracy in a liquid environment," Yabuno said.

The coupled cantilever, constructed from an etched silicon-insulator-silicon wafer, resembles a tiny tuning fork whose prongs measure 500 by 100 micrometers. The researchers tested their cantilever's capacities by measuring the mass of polystyrene microspheres, which have a mean diameter of 15.0 micrometers -- the same order of magnitude as a liver cell.

In their setup, a sphere was placed on one of the prongs -- in a biological system, samples would be affixed by covalent mobilization, Yabuno said.

The prongs were then both stimulated by a piezo actuator, a device that converts an electrical signal into a controlled physical displacement. In order to induce self-excited oscillation in the cantilevers, the motion of the actuator is automatically adjusted by a suitable feedback referring to the motion of one of the cantilevers.

The sphere's presence on one of the prongs results in a mass difference ratio between the two, which affects the ensuing vibrations, as measured by a pair of laser Doppler vibrometers and observed in spectrum analysis of the cantilever's oscillating frequencies.

"The method can be applied to more down-sized, nano-scale, coupled cantilevers," Yabuno said. "It can be expected to realize the measurement of infinitesimal mass, which is impossible in existing methods, even in any measurement environments."

Future work for Yabuno and his colleagues involves using the cantilevers to obtain high-accuracy quantitative measurements of biological samples such as human cells and DNA in liquid media.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: apl.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Self-excited coupled-microcantilevers for mass sensing," is authored by Daichi Endo, Hiroshi Yabuno, Keiichi Higashino, Yasuyuki Yamamoto and Sohei Matsumoto. It will appear in the journal Applied Physics Letters on June 2, 2015 (DOI: 10.1063/1.4921082). After that date, it can be accessed at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project