Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study

Abstract:
Biomedical researchers at Cedars-Sinai have invented a tiny drug-delivery system that can identify cancer cell types in the brain through "virtual biopsies" and then attack the molecular structure of the disease.

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study

Los Angeles, CA | Posted on May 27th, 2015

If laboratory research with mice is borne out in human studies, the results could be used to deliver nano-scale drugs that can distinguish and fight tumor cells in the brain without resorting to surgery.

"Our nanodrug can be engineered to carry a variety of drugs, proteins and genetic materials to attack tumors on several fronts from within the brain," said Julia Ljubimova, MD, PhD, professor of neurosurgery and biomedical sciences at Cedars-Sinai and a lead author of an article published online in the American Chemical Society's journal ACS Nano.

Ljubimova, director of the Nanomedicine Research Center in the Department of Neurosurgery and director of the Nanomedicine Program at the Samuel Oschin Comprehensive Cancer Institute, has received a $2.5 million grant from the National Institutes of Health to continue the research.

The drug delivery system and its component parts, together called a nanobioconjugate or nanodrug, is in an emerging class of molecular drugs designed to slow or stop cancers by blocking them in multiple ways within the brain. The drug is about 20 to 30 nanometers in size - a fraction of a human hair, which is 80,000 to 100,000 nanometers wide.

Cedars-Sinai scientists began developing the "platform" of the drug delivery system about a decade ago. The nanodrug can have a variety of chemical and biological "modules" attached.

"Each component serves a specialized function, such as seeking out cancer cells and binding to them, permeating the walls of blood vessels and tumor cells, or dismantling molecular mechanisms that promote tumor growth," said Eggehard Holler, PhD, professor of neurosurgery and director of nanodrug synthesis at Cedars-Sinai.

The new delivery system plays two roles: diagnosing brain tumors by identifying cells that have spread to the brain from other organs, and then fighting the cancer with precise, individualized tumor treatment.

Researchers can determine tumor type by attaching a tracer visible on an MRI. If the tracer accumulates in the tumor, it will be visible on MRI. With the cancer's molecular makeup identified through this virtual biopsy, researches can load the "delivery system" with cancer-targeting components that specifically attack the molecular structure.

To show that the virtual biopsies could distinguish one cancer cell type from another, the researchers devised what is believed to be a unique method, implanting different kinds of breast and lung cancers into laboratory mice to represent metastatic disease - with one type of cancer implanted on each side of the brain. Lung and breast cancers are those that most often spread to the brain.

The researchers used the nano delivery system to identify and attack the cancers. In each instance, animals that received treatment lived significantly longer than those in control groups.

"Several drugs are quite effective in treating different types of breast cancers, lung cancer, lymphoma and other cancers at their original sites, but they are ineffective against cancers that spread to the brain because they are not able to cross the blood-brain barrier that protects the brain from toxins in the blood," said Keith Black, MD, chair of the Department of Neurosurgery, director of the Maxine Dunitz Neurosurgical Institute, director of the Johnnie L. Cochran, Jr., Brain Tumor Center and the Ruth and Lawrence Harvey Chair in Neuroscience.

"The nanodrug is engineered to cross this barrier with its payload intact, so drugs that are effective outside the brain may be effective inside as well," Black added.

###

Ljubimova, Black and Holler led the study and contributed equally to the article. Rameshwar Patil, PhD, a project scientist in Ljubimova's laboratory, is first author. Researchers from Cedars-Sinai's Department of Neurosurgery, Department of Biomedical Sciences, Department of Imaging, and the Samuel Oschin Comprehensive Cancer Institute contributed to the study with colleagues from the University of Southern California and Arrogene Inc., a biotech company associated with Cedars-Sinai.

The study was supported by NIH grants U01 CA151815, R01 CA136841, R01 CA188743, and EY013431, Arrogene Inc. grants and Martz Translational Breast Cancer Research Fund. The new NIH National Cancer Institute grant, R01CA188743, will fund ongoing study.

####

For more information, please click here

Contacts:
Sandy Van

808-526-1708

Copyright © Cedars-Sinai Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: "MRI Virtual Biopsy and Treatment of Brain Metastatic Tumors with Targeted Nanobioconjugates." Publication Date (Web): April 23, 2015. DOI: 10.1021/acsnano.5b01872:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project