Home > Press > Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows
![]() |
Abstract:
Radiotherapy used in cancer treatment is a promising treatment method, albeit rather indiscriminate. Indeed, it affects neighbouring healthy tissues and tumours alike. Researchers have thus been exploring the possibilities of using various radio-sensitizers; these nanoscale entities focus the destructive effects of radiotherapy more specifically on tumour cells. In a study published in EPJ D, physicists have now shown that the production of low-energy electrons by radio-sensitizers made of carbon nanostructures hinges on a key physical mechanism referred to as plasmons - collective excitations of so-called valence electrons; a phenomenon already documented in rare metal sensitizers. This reseach was conducted by Alexey Verkhovtsev, affiliated with the MBN Research Center in Frankfurt, Germany and A.F. Ioffe Physical-Technical Institute in St Petersburg, Russia and an international team.
Nanoparticle radio-sensitizers are nanoscale compounds, typically composed of rare metals such as coated gold, platinum, or gadolinium. Alternatives sensitizers could be made of carbon-based nanostructures, such as fullerenes or nanotubes, provided they are biocompatible and non-toxic. Previous studies have revealed that gold and platinum nanoparticles produce a large number of electrons via the plasmon excitation mechanism. In the case of a carbon nanoparticle, this phenomenon yields electrons with higher energy than pure metals, thus inducing greater biological damage.
In this study, the authors analysed the spectra of secondary electrons emitted from a carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, irradiated by an ion beam consisting of fast protons. They quantified the electron yield in a broad kinetic energy range, using several different theoretical and numerical approaches. They found that a medium with an embedded carbon nanoparticle results in a number of low-energy electrons several times higher than that emitted by pure water. This may lead to the development of novel types of sensitizers composed of metallic and carbon-based parts.
###
Reference: Alexey Verkhovtsev, Sally McKinnon, Pablo de Vera, Eugene Surdutovich, Susanna Guatelli, Andrei V. Korol, Anatoly Rosenfeld, and Andrey V. Solov'yov (2015), Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium, Eur. Phys. J. D 69: 116, DOI: 10.1140/epjd/e2015-50908-y
####
For more information, please click here
Contacts:
Sabine Lehr
49-622-148-78336
Copyright © Springer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |