Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists control the flow of heat and light in photonic crystals

Once the laser beam hits the surface of a sample it starts to generate heat which diffuses along the membrane but also it diffuses to the ambient gas. That effect reduces the width of the temperature distribution in the photonic crystal membrane.
Once the laser beam hits the surface of a sample it starts to generate heat which diffuses along the membrane but also it diffuses to the ambient gas. That effect reduces the width of the temperature distribution in the photonic crystal membrane.

Abstract:
Scientists from the MESA+ Institute for Nanotechnology at the University of Twente in the Netherlands and Thales Research & Technology, France, have found a way to control heat propagation in photonic nano-sized devices, which will be used for high speed communications and quantum information technologies. Their results are published in the leading American journal Applied Physics Letters on 30 April 2015.

Scientists control the flow of heat and light in photonic crystals

Enschede, Netherlands | Posted on May 9th, 2015

Heat controls light

Photonic crystals, are photonic structures with nano-sized geometrical features, are useful for the light control, for example, they can be used to make ultra-compact integrated circuits for light. One of the simplest and most versatile ways to control these circuits is by heating them, thereby locally changing their properties. However, it is extremely important to apply heat at the right place, but this is difficult because heat tends to diffuse. As a consequence neighboring elements will be affected by the heat, producing unwanted changes in structures with multiple elements. However, heat propagation in thin membranes also depends on the surrounding media, thus providing an extra degree of freedom to control the heat distribution.

Thus, the temperature distribution across the membrane can be reduced by changing the embedding medium. The faster the heat diffuses away, the narrower the temperature distribution is in the photonic crystal membrane.

The researchers experimentally and theoretically show that significantly better control is obtained using high thermal conductivity gases as the surrounding media. They found that when helium is used as the ambient gas, the width of the temperature distribution in the structure is reduced by 30% when compared to air. The results the researchers obtained are important because they enable thermal tuning of coupled resonators which will be valuable in the quest to build programmable optical circuits.

The research is founded by the European Research Council grant (№279248).

The paper
Applied Physics Letters, Vol. 106, p. 171113 (2015)

####

For more information, please click here

Contacts:
Jochem Vreeman
University of Twente
0031612221253


Sergei Sokolov, MSc.
University of Twente


Prof. Allard Mosk
University of Twente


Dr. Alfredo De Rossi
Thales Research & Technology

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project