Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Inkjet printing process for kesterite solar cells

This is an illustration of the working principle of inkjet printing.
CREDIT: HZB
This is an illustration of the working principle of inkjet printing.

CREDIT: HZB

Abstract:
The drop-on-demand inkjet printing is a promising approach allowing patterning of materials with negligible materials waste; hence, significant reduction of raw materials cost can be achieved. Furthermore, inkjet printing can be easily adapted to a roll-to-roll process, which is suitable for large scale production. From the industrial application perspective, both of these two features of the inkjet printing technology are of great interest. A critical requirement for using inkjet printing is to develop a suitable ink in terms of viscosity and stability which leads to compact and homogeneous films.

Inkjet printing process for kesterite solar cells

Berlin, Germany | Posted on May 6th, 2015

Tuning the molecular ink

Dr. Xianzhong Lin from the Institute for Heterogeneous Material Systems of HZB used a molecular ink which was originally developed for spin coating technologies. The ink is produced by dissolving Cu, Zn, Sn metal salt and thiourea in dimethyl sulfoxide solvent. Lin tested its suitability for inkjet printing. He found that the viscosity of the ink can be tuned by adjusting the ink concentration and the ink composition can also be easily controlled by adding or reducing the amount of each chemical added. The CZTSSe absorbers were formed by annealing the inkjet-printed Cu-Zn-Sn-S precursor film under an atmosphere containing Selenium.

Economical process

Initial optimization of the processing conditions such as ink composition and printing parameters have already yielded solar cells with efficiencies up to 6.4 %. The huge advantage of inkjet printing versus spin coating to obtain thin film absorbers is the lesser amount of waste: Whereas with spin coating, a large quantity of the ink material is wasted, the inkjet printing is very economical: For example, less than 20 microliter ink is needed to build up a micrometer CZTSSe thin film absorber on an inch by inch substrate in this study.

Low toxicity and low waste

"Although the solar cell performance is still far below the record efficiency of 12.7 % for CZTSSe based solar cells, the great advantage of our approach is the low toxic and low material wastage process", Prof. Martha Lux-Steiner explains. The team is now working on the optimization of processing conditions for the kesterite absorbers to further improve the solar cell performance and on the deposition of buffer and TCO layers by inkjet printing. The goal is to print a complete device with high efficiency without relying on expensive vacuum technology. This work opens up a promising route for the fabrication of kesterite thin film solar cells.

####

For more information, please click here

Contacts:
Dr. Antonia Rötger

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project