Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Field-effect transistors on hybrid perovskites fabricated for first time

Abstract:
Researchers from Wake Forest University and the University of Utah are the first to successfully fabricate halide organic-inorganic hybrid perovskite field-effect transistors and measure their electrical characteristics at room temperature.

Field-effect transistors on hybrid perovskites fabricated for first time

Winston-Salem, NC | Posted on May 6th, 2015

"We designed the structure of these field-effect transistors that allowed us to achieve electrostatic gating of these materials and determine directly their electrical properties," said lead author, Oana Jurchescu, an assistant professor of physics at Wake Forest. "Then we fabricated these transistors with the Utah team and we measured them here in our lab."

Hybrid perovskites are a family of crystalline materials that hold great promise in the clean energy world.

Until now, researchers have not been able to fabricate field-effect transistors to measure the charge transport of the materials. Necessary prerequisites for a material that forms an efficient solar cell are strong optical absorption and efficient charge carrier transport, Jurchescu said. With these first generation transistors, the Wake Forest researchers were able for the first time to directly measure and calculate the electrical properties, eliminating indirect approximations.

"This is exciting because hybrid perovskites could be the next generation of solar cells," she said. "The solar cells convert solar energy into electrical energy so it's a sustainable and environmentally friendly energy source, giving high performance at a low cost."

Zeev "Valy" Vardeny, co-author and distinguished professor of physics and astronomy, University of Utah, agrees. "This work shows that in addition to solar cell technologies, the hybrid perovskites have potential to be used in a variety of optoelectronic applications."

This next step in the development of these materials as the possible next generation of solar cell components is detailed in a study published online in the journal MRS Communications by the two research teams.

Jurchescu said hybrid perovskites have taken the solar cell field by storm since 2009, when they were first introduced. The power conversion efficiencies have grown from around 4 percent to 20 percent in just five years. By comparison, other conventional materials used to generate electricity from sunlight have taken decades to achieve high performance levels.

Jurchescu and graduate student Yaochuan "Josh" Mei, who has worked in her lab for almost five years, said this research builds on what they have learned in their previous work. "This work is based on the knowledge and infrastructure learned from our organic electronics work over the years," Mei said. "This material is pretty new for us and we learned a lot in just a few months."

"We will learn from these first lessons and try to make them better," Jurchescu said. "Really, this is just the first step. Next we will look into the spin manipulation of the injected carriers in these devices and other electrical, optical and magnetic field applications."

###

Co-authors from the University of Utah are Z. Valentine Vardeny and C. Zhang.

####

About Wake Forest University
Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University's graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment.

For more information, please click here

Contacts:
Bonnie Davis

336-758-5390

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project