Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Field-effect transistors on hybrid perovskites fabricated for first time

Abstract:
Researchers from Wake Forest University and the University of Utah are the first to successfully fabricate halide organic-inorganic hybrid perovskite field-effect transistors and measure their electrical characteristics at room temperature.

Field-effect transistors on hybrid perovskites fabricated for first time

Winston-Salem, NC | Posted on May 6th, 2015

"We designed the structure of these field-effect transistors that allowed us to achieve electrostatic gating of these materials and determine directly their electrical properties," said lead author, Oana Jurchescu, an assistant professor of physics at Wake Forest. "Then we fabricated these transistors with the Utah team and we measured them here in our lab."

Hybrid perovskites are a family of crystalline materials that hold great promise in the clean energy world.

Until now, researchers have not been able to fabricate field-effect transistors to measure the charge transport of the materials. Necessary prerequisites for a material that forms an efficient solar cell are strong optical absorption and efficient charge carrier transport, Jurchescu said. With these first generation transistors, the Wake Forest researchers were able for the first time to directly measure and calculate the electrical properties, eliminating indirect approximations.

"This is exciting because hybrid perovskites could be the next generation of solar cells," she said. "The solar cells convert solar energy into electrical energy so it's a sustainable and environmentally friendly energy source, giving high performance at a low cost."

Zeev "Valy" Vardeny, co-author and distinguished professor of physics and astronomy, University of Utah, agrees. "This work shows that in addition to solar cell technologies, the hybrid perovskites have potential to be used in a variety of optoelectronic applications."

This next step in the development of these materials as the possible next generation of solar cell components is detailed in a study published online in the journal MRS Communications by the two research teams.

Jurchescu said hybrid perovskites have taken the solar cell field by storm since 2009, when they were first introduced. The power conversion efficiencies have grown from around 4 percent to 20 percent in just five years. By comparison, other conventional materials used to generate electricity from sunlight have taken decades to achieve high performance levels.

Jurchescu and graduate student Yaochuan "Josh" Mei, who has worked in her lab for almost five years, said this research builds on what they have learned in their previous work. "This work is based on the knowledge and infrastructure learned from our organic electronics work over the years," Mei said. "This material is pretty new for us and we learned a lot in just a few months."

"We will learn from these first lessons and try to make them better," Jurchescu said. "Really, this is just the first step. Next we will look into the spin manipulation of the injected carriers in these devices and other electrical, optical and magnetic field applications."

###

Co-authors from the University of Utah are Z. Valentine Vardeny and C. Zhang.

####

About Wake Forest University
Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University's graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment.

For more information, please click here

Contacts:
Bonnie Davis

336-758-5390

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project