Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Field-effect transistors on hybrid perovskites fabricated for first time

Abstract:
Researchers from Wake Forest University and the University of Utah are the first to successfully fabricate halide organic-inorganic hybrid perovskite field-effect transistors and measure their electrical characteristics at room temperature.

Field-effect transistors on hybrid perovskites fabricated for first time

Winston-Salem, NC | Posted on May 6th, 2015

"We designed the structure of these field-effect transistors that allowed us to achieve electrostatic gating of these materials and determine directly their electrical properties," said lead author, Oana Jurchescu, an assistant professor of physics at Wake Forest. "Then we fabricated these transistors with the Utah team and we measured them here in our lab."

Hybrid perovskites are a family of crystalline materials that hold great promise in the clean energy world.

Until now, researchers have not been able to fabricate field-effect transistors to measure the charge transport of the materials. Necessary prerequisites for a material that forms an efficient solar cell are strong optical absorption and efficient charge carrier transport, Jurchescu said. With these first generation transistors, the Wake Forest researchers were able for the first time to directly measure and calculate the electrical properties, eliminating indirect approximations.

"This is exciting because hybrid perovskites could be the next generation of solar cells," she said. "The solar cells convert solar energy into electrical energy so it's a sustainable and environmentally friendly energy source, giving high performance at a low cost."

Zeev "Valy" Vardeny, co-author and distinguished professor of physics and astronomy, University of Utah, agrees. "This work shows that in addition to solar cell technologies, the hybrid perovskites have potential to be used in a variety of optoelectronic applications."

This next step in the development of these materials as the possible next generation of solar cell components is detailed in a study published online in the journal MRS Communications by the two research teams.

Jurchescu said hybrid perovskites have taken the solar cell field by storm since 2009, when they were first introduced. The power conversion efficiencies have grown from around 4 percent to 20 percent in just five years. By comparison, other conventional materials used to generate electricity from sunlight have taken decades to achieve high performance levels.

Jurchescu and graduate student Yaochuan "Josh" Mei, who has worked in her lab for almost five years, said this research builds on what they have learned in their previous work. "This work is based on the knowledge and infrastructure learned from our organic electronics work over the years," Mei said. "This material is pretty new for us and we learned a lot in just a few months."

"We will learn from these first lessons and try to make them better," Jurchescu said. "Really, this is just the first step. Next we will look into the spin manipulation of the injected carriers in these devices and other electrical, optical and magnetic field applications."

###

Co-authors from the University of Utah are Z. Valentine Vardeny and C. Zhang.

####

About Wake Forest University
Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University's graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment.

For more information, please click here

Contacts:
Bonnie Davis

336-758-5390

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project