Home > Press > International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment
![]() |
This is a scanning electron microscope image and computer model of a malaria parasite-infected red blood cell membrane. CREDIT: Images generated by Eric Hanssen, Bio21 Institute, University of Melbourne, Australia and Yao Zhang, Penn State. |
Abstract:
A team of researchers from four universities has pinpointed one of the mechanisms responsible for the progression of malaria, providing a new target for possible treatments.
Using computer modeling, Carnegie Mellon President Subra Suresh and his colleagues found that nanoscale knobs, which form at the membrane of infected red blood cells, cause the cell stiffening that is in part responsible for the reduced blood flow that can turn malaria deadly. The findings represent a new understanding of the mechanisms behind the progression of malaria, opening a new avenue of research into therapies for the disease that infects close to 200 million people each year.
Suresh and researchers from The Pennsylvania State University, the Massachusetts Institute of Technology and the University of Melbourne in Australia reported their findings in the online early edition of the Proceedings of the National Academy of Sciences (PNAS).
Malaria is caused by Plasmodium parasites, which are spread to people via infected Anopheles mosquitos. While malaria is preventable and treatable, worldwide there are still approximately 198 million cases each year, resulting in an estimated 584,000 deaths, according to the World Health Organization.
"Many of malaria's symptoms are the result of impeded blood flow, which is directly tied to structural changes in infected red blood cells," said Suresh, a co-author of the study who holds faculty appointments in CMU's College of Engineering, School of Computer Science and Heinz College. "Computer modeling gives us an unprecedented opportunity to investigate these structural changes and improve our understanding of this often deadly disease."
When a person contracts malaria, the parasites grow and multiply in the liver and then move into the red blood cells. Normally, red blood cells are very elastic, which allows them to flow easily through the body's veins and stretch to squeeze through narrow capillaries connected to the body's vital organs. When red blood cells are infected by Plasmodium parasites, two changes occur: the cells become stiff, so they can't stretch to fit through narrow capillaries, and the cells become sticky and adhere to the walls of veins. As a result, the infected cells obstruct blood flow, preventing healthy red blood cells from expediently reaching and delivering oxygen and nutrients to organs, including the brain. The infected cells also can't make their way to the spleen, which would eliminate them from the body.
When a cell is infected, the Plasmodium parasite releases proteins that interact with the cell membrane of the host red blood cell. The cell membrane undergoes a series of changes that result in stiffness and stickiness. While researchers are fairly certain that the stickiness is caused by nanoscale knobs that protrude from the cell membrane, they were uncertain as to what caused the stiffness. They hypothesized that the parasite protein/cell membrane interaction caused spectrin, a cytoskeletal protein that provides a scaffold for the cell membrane, to rearrange its networked structure to be more rigid. However, the complexity of the cell membrane made it difficult for researchers to study and prove this hypothesis experimentally.
In order to visualize what happens at the cell membrane during malarial infection, the research team turned to a computer simulation technique called coarse-grained molecular dynamics (CGMD). CGMD has proven to be very valuable for studying what happens at the cell membrane because it represents membrane's complex proteins and lipids with larger, simplified components rather than atom by atom. Doing this requires less computing time and power than standard atomistic models, which allows scientists to run simulations for longer periods of time while still accurately recreating the behavior of the cell membrane.
Typically, researchers introduce different variables into the simulation and observe how the membrane reacts. In the current study, the researchers seeded the model membrane with proteins released by one of the most common, and the most deadly, malarial parasites, Plasmodium falciparum.
From their simulation, the researchers found that the stiffening of the red blood cell membrane had little to do with the remodeling of spectrin. Instead, the nanoscale knobs that cause the red blood cells to stick to the vein's walls also cause the membrane to stiffen through a number of different mechanisms, including composite strengthening, strain hardening and density-dependent vertical coupling effects.
According to the researchers, the discovery of this new mechanism responsible for the stiffening of infected red blood cells could provide a promising target for new antimalarial therapies.
###
This research was supported by the National Science Foundation (CMMI-0754463, CBET-1067523 and CBET-1240696). Co-authors of the study include Yao Zhang, Changjin Huang, Mahdi Golkaram and Sulin Zhang of the Pennsylvania State University; Sangtae Kim and Ju Li of the Massachusetts Institute of Technology; and Matthew W. A. Dixon and Leann Tilley of the University of Melbourne.
####
For more information, please click here
Contacts:
Jocelyn Duffy
412-268-9982
Copyright © Carnegie Mellon University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |