Home > Press > Nanocoatings Reduce Skin Inflammation Caused by Implants in Body
Abstract:
Iranian researchers from Shiraz University of Technology designed a nanocoating in a laboratorial research, which reduces inflammation caused by implants in the body.
The nanocoating is made of biocompatible materials and has a long effective life due to its desirable properties. Results of the research have applications in tissue engineering.
The mechanical behavior of nickel-titanium alloy is more close to that of bone tissue in comparison with other metallic implants, and it has greater effects on the bone growth and treatment of the damaged tissue. Therefore, this alloy is considered an appropriate choice to be used in tissue engineering. However, the biocompatibility of the alloy is low due to the presence of high amount of nickel and the reaction with the surrounding tissues and it causes problems such as skin inflammation and blisters.
The aim of the research was to create a biocompatible coating to be used on implants made of nickel-titanium. Taking into consideration the fact that nickel composes about 50% of the weight of nickel-titanium implants, nickel ions are released inside the body and they cause some problems.
The coating designed in this research is a nanocomposite made of hydroxyapatite powder and titanium dioxide nanoparticles. The coating blocks the nickel ions and prevents their diffusion into the body.
Among other advantages of the proposed nanocoating, mention can be made of decreasing the risk of allergy and poisoning caused due to the contact of nickel with tissues, and the prevention of secondary surgery to remove the implant.
Results of the research have been published in Surface and Interface Analysis, vol. 47, issue 2, 2015, pp. 176-183.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||