Home > Press > Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment
![]() |
The image above illustrates how proteins (copper-colored coils) modified with polyhistidine-tags (green diamonds) can be attached to nanoparticles (red circle). CREDIT: Jonathan Lovell |
Abstract:
Fastening protein-based medical treatments to nanoparticles isn't easy.
With arduous chemistry, scientists can do it. But like a doomed marriage, the fragile binding that holds them together often separates.
This problem, which has limited how doctors can use proteins to treat serious disease, may soon change.
University at Buffalo researchers have discovered a way to easily and effectively fasten proteins to nanoparticles - essentially an arranged marriage - by simply mixing them together. The biotechnology, described April 20 online in the journal Nature Chemistry, is in its infancy. But it already has shown promise for developing an HIV vaccine and as a way to target cancer cells.
"Scientists have been able to attach proteins to nanoparticles for a while now. But it's a fairly difficult process that's only effective in a controlled environment. Nobody has been able to devise a simple method that can work inside the body," said Jonathan F. Lovell, PhD, UB assistant professor of biomedical engineering, who led the research.
He added: "We have proven that you can easily attach proteins to nanoparticles and, like Velcro that doesn't unstick, it stays together."
Additional authors include researchers from UB's Department of Chemical and Biological Engineering and Department of Microbiology and Immunology.
To create the biotechnology, the researchers use nanoparticles made of chlorophyll (a natural pigment), phospholipid (a fat similar to vegetable oil) and cobalt (a metal often used to prepare magnetic, water-resistant and high-strength alloys).
The proteins, meanwhile, are modified with a chain of amino acids called a polyhistidine-tag. Uncommon in medicine, polyhistidine-tags are used extensively in protein research.
Next, the researchers mixed the modified proteins and nanoparticles in water. There, one end of the protein embeds into the nanoparticle's outer layer while the rest of it sticks out like a tentacle.
To test the new binding model's usefulness, the researchers added to it an adjuvant, which is an immunological agent used to enhance the efficacy of vaccines and drug treatments. The results were impressive. The three parts - adjuvant, protein and nanoparticle - worked together to stimulate an immune response against HIV.
The researchers also tested proteins that target cancer cells. Again, the results were exciting, with the new binding model acting like a homing missile to tumors. The targeted nanoparticles have the potential to improve cancer treatment by targeting specific cancer cells in lieu of releasing anti-cancer drugs everywhere in the body.
Lovell plans to follow up the research with more rigorous testing of the vaccine and tumor-targeted technologies. Moving to human clinical trials is the ultimate goal.
###
The research is supported by the National Institutes of Health, with grants from the National Institute of Biomedical Imaging and Bioengineering, as well as its Early Independence Award program, which funds high-risk, high-reward research.
####
For more information, please click here
Contacts:
Cory Nealon
cmnealon@buffalo.edu
716-645-4614
Copyright © University at Buffalo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |