Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties

The schematic models and electron microscope images show defined architectures consisting of proteins (green in the model) and gold nanoparticles. Source: Stefan Schiller
The schematic models and electron microscope images show defined architectures consisting of proteins (green in the model) and gold nanoparticles.

Source: Stefan Schiller

Abstract:
The Freiburg researchers Dr. Andreas Schreiber and Dr. Matthias Huber, the head of their research group Dr. Stefan Schiller, and their colleagues at the University of Constance have developed the concept of protein adaptor based nano-object assembly (PABNOA). PABNOA makes it possible to assemble gold nanoparticles in various structures with the help of ring-shaped proteins while defining the precise distance between these particles. This opens up the possibility of producing bio-based materials with new optical and plasmonic properties. The field of nanoplasmonics focuses on miniscule electromagnetic waves metal particles emit when they interact with light. The principle behind the production of these materials could also be applied to develop nanosystems that convert light into electrical energy as well as bio-based materials with new magnetic properties. The team published its findings in the journal Nature Communications.

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties

Freiburg, Germany | Posted on April 17th, 2015

Schiller's team is using tailor-made proteins as building blocks to assemble nanosystems with new physical, chemical, and biological properties. The sustainable and resource-conserving production of these proteins occurs in processes like the natural energy and material cycle of cells. To this end, the team is working on equipping bacteria with additional elements - such as enzymes, transporters, switches, and organelles, the organs of the cell. In the future, the scientists hope that these elements will extend the range of functions of the cell to enable the sustainable production of the desired nanosystems with a minimum of resources. The same principle could also be used to produce basic raw materials for the chemical industry. "Methods like this are indispensable for the successful transition of our economy to a sustainable and resilient bioeconomy," says Schiller.

Stefan Schiller is a research group head at the Freiburg Center for Systems Biology (ZBSA) and a member of the Cluster of Excellence BIOSS Biological Signalling Studies of the University of Freiburg. The research was conducted in cooperation with scientists from the University of Constance. The project is receiving funding from the Baden-Württemberg Foundation within the context of the research network "Functional Nanostructures."

####

About Albert-Ludwigs-Universität Freiburg
The University of Freiburg was founded in 1457 as a classical comprehensive university, making it one of the oldest higher education institutions in Germany. Successful in the Excellence Initiative, the university also boasts an illustrious history with numerous Nobel Prize recipients. Brilliant scholars and creative thinking distinguish it today as a modern top-notch university well equipped for the challenges of the 21st century.

For more information, please click here

Contacts:
Dr. Stefan Schiller
Freiburg Center for Systems Biology
University of Freiburg
Phone: +49 (0)761/203-97405


Petra Kränzlein

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project