Home > Press > Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program
Abstract:
Oxford Instruments is pleased to announce the successful commissioning of a high field outsert magnet system to become part of the National High Magnetic Field Laboratory's (National MagLab) all-superconducting 32 Tesla (T) user magnet project.
The Oxford Instruments 15 T outsert magnet system has a very large cold magnet bore diameter of 250 mm, enabling an "insert" of high temperature superconductor coils designed and manufactured by the National MagLab to be fitted within it, together generating the total magnetic field up to the target 32 T. Achieving this high field in an all-superconducting magnet will be a major step forward in high-field user capability at the National MagLab, as well as removing the infrastructure requirements and costs associated with the typical resistive magnets used to generate magnetic fields greater than 30 T today.
The so-called "outsert" magnet generates 15 T within a very large magnet bore of 250 mm, operating at 4.2 K, the normal boiling point of liquid helium. Until recently, such combinations of high magnetic field and large bore size or sample space could only be achieved by super-cooling the magnet to 2.2 K by the use of further cooling applied to the liquid helium. Oxford Instruments has built on its significant experience in such large magnets with high stored energies (in this case some 6.9 MJ) to answer the particular engineering challenges of coil stress and quench management. Oxford Instruments combined extensive modelling with innovative construction techniques in order to produce the reliable high field niobuim tin superconductor coils required. Furthermore, specific cryogenic design and manufacture techniques were employed to mitigate the large forces which can be created by induced eddy currents in the cryostat during a magnet quench.
Throughout the outsert magnet project, the respective magnet engineering and project teams in Oxford Instruments and at the National MagLab's headquarters facility at Florida State University (Tallahassee, FL, USA) have worked closely together, ensuring careful management of the significant technical challenges and risks. The successful first-time commissioning of the magnet system is a testament to that close partnership.
This new magnet commissioning heralds a further success, building upon the success of the 19 T, 150 mm bore magnet system recently commissioned at the Dresden High Magnetic Field Laboratory (Hochfeld-Magnetlabor Dresden - HLD), Germany. Building on the technological advances in the design and manufacture of these new high field, high stored energy magnet systems, Oxford Instruments now has additional customer orders in progress.
An essential enabling factor in these powerful high-field magnets has been the development of RRP® (rod restack process) niobium tin conductor by Oxford Superconducting Technology (OST - Carteret, NJ, USA), a member of the Oxford Instruments group of companies. The RRP conductor is a specialised high-performance product geared towards optimised performance for ultra-high field superconducting magnets. The close cooperation over an extended period between OST as conductor manufacturer and the Oxford Instruments magnet engineering team is a key factor in allowing units such as this to be built.
When completed, the National MagLab's 32 T will be the first high-field magnet available to researchers to incorporate high temperature superconducting YBCO. Commercial companies have been developing YBCO for some years in collaboration with National MagLab engineers and scientists, and the finished 2.3 ton magnet system will feature around six miles of YBCO tape, formed into 112 disc-shaped "pancakes." Two inner coils of YBCO fabricated at the National MagLab will be surrounded by the Oxford Instruments 15 T outsert. The new magnet will be particularly attractive for users whose experiments require lower noise and longer running times than resistive magnets can offer, while the relatively fast ramp-rate of 32 T/hour will also allow for many field sweeps per day..
Director of the National High Magnetic Field Laboratory Greg Boebinger commented on the 15 T magnet system as "Another great magnet from Oxford Instruments! …the foundation for even greater things to come!"
Dr Michael Cuthbert, Managing Director of Oxford Instruments NanoScience said, "We are delighted to be continuing a long-standing relationship with the National MagLab through partnering for the supply of this outsert magnet for the 32 T program. The completion of the magnet for National MagLab, particularly coming so closely after the system for Dresden, further confirms Oxford Instruments' world-class capability to develop state of the art high field superconducting magnet systems."
High magnetic fields are needed by the research community in physical and life sciences to explore new areas in nanoscience, nanotechnology, bioscience and materials research. Moreover, high fields in combination with low temperatures are a crucial aid in studying, modifying and controlling new states of matter. This enables new innovations by discovering advanced materials and allows studies at the nano scale. Superconducting magnets provide high magnetic fields without the enormous power consumption and large infrastructure requirements of resistive magnets.
Read more at www.oxford-instruments.com or, for more information on the National MagLab's 32 T project, visit https://nationalmaglab.org/magnet-development/magnet-science-technology/magnet-projects/32-tesla-scm .
Issued for and on behalf of Oxford Instruments NanoScience
####
About Oxford Instruments NanoScience
Oxford Instruments NanoScience designs, supplies and supports market-leading research tools that enable quantum technologies, new materials and device development in the physical sciences. Our tools support research down to the atomic scale through creation of high performance, cryogen-free low temperature and magnetic environments, based upon our core technologies in low and ultra-low temperatures, high magnetic fields and system integration, with ever-increasing levels of experimental and measurement readiness.
Oxford Instruments
NanoScience is a part of the Oxford Instruments plc group.
About Oxford Superconducting Technology
For nearly half a century, Oxford Instruments Superconducting Technology has been designing, developing and producing innovative conductors to meet the requirements of a sophisticated base of scientific and commercial customers. Our products are at the very heart of a majority of the superconducting magnets world wide, and continue to be the first choice for quality and performance.
About Oxford Instruments plc
Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion.
The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company with over 2300 staff worldwide and is listed on the FTSE250 index of the London Stock Exchange (OXIG). Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company’s strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect.
This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; x-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.
Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.
About the National High Magnetic Field Laboratory
The National High Magnetic Field Laboratory is the world’s largest and highest-powered magnet facility. Located at Florida State University, the University of Florida and Los Alamos National Laboratory, the interdisciplinary National MagLab hosts scientists from around the world to perform basic research in high magnetic fields, advancing our understanding of materials, energy and life. The lab is funded by the National Science Foundation (DMR-1157490) and the state of Florida. For more information, visit us online at nationalmaglab.org or follow us on Facebook, Twitter, Instagram and Pinterest at NationalMagLab.
For more information, please click here
Contacts:
NanoScience
Tubney Woods
Abingdon, Oxon OX13 5QX UK
Tel: +44 (0) 1865 393200
Fax: +44 (0) 1865 393333
Soma Deshprabhu
Marketing Communications Manager
Oxford Instruments NanoScience
Copyright © Oxford Instruments NanoScience
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
New-Contracts/Sales/Customers
Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020
GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||