Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST tightens the bounds on the quantum information 'speed limit'

The size of a quantum computer affects how quickly information can be distributed throughout it. The relation was thought to be logarithmic (blue). Progressively larger systems would need only a little more time. New findings suggest instead a power law relationship (red), meaning that the "speed limit" for quantum information transfer is far slower than previously believed.
CREDIT: NIST
The size of a quantum computer affects how quickly information can be distributed throughout it. The relation was thought to be logarithmic (blue). Progressively larger systems would need only a little more time. New findings suggest instead a power law relationship (red), meaning that the "speed limit" for quantum information transfer is far slower than previously believed.

CREDIT: NIST

Abstract:
If you're designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but physicists at the National Institute of Standards and Technology (NIST) have narrowed the theoretical limits for where that "speed limit" is. The research implies that quantum processors will work more slowly than some research has suggested.*

NIST tightens the bounds on the quantum information 'speed limit'

Gaithersburg, MD | Posted on April 13th, 2015

The work offers a better description of how quickly information can travel within a system built of quantum particles such as a group of individual atoms. Engineers will need to know this to build quantum computers, which will have vastly different designs and be able to solve certain problems much more easily than the computers of today. While the new finding does not give an exact speed for how fast information will be able to travel in these as-yet-unbuilt computers--a longstanding question--it does place a far tighter constraint on where this speed limit could be.

Quantum computers will store data in a particle's quantum states--one of which is its spin, the property that confers magnetism. A quantum processor could suspend many particles in space in close proximity, and computing would involve moving data from particle to particle. Just as one magnet affects another, the spin of one particle influences its neighbor's, making quantum data transfer possible, but a big question is just how fast this influence can work.

The NIST team's findings advance a line of research that stretches back to the 1970s, when scientists discovered a limit on how quickly information could travel if a suspended particle only could communicate directly with its next-door neighbors. Since then, technology advanced to the point where scientists could investigate whether a particle might directly influence others that are more distant, a potential advantage. By 2005, theoretical studies incorporating this idea had increased the speed limit dramatically.

"Those results implied a quantum computer might be able to operate really fast, much faster than anyone had thought possible," says NIST's Michael Foss-Feig. "But over the next decade, no one saw any evidence that the information could actually travel that quickly."

Physicists exploring this aspect of the quantum world often line up several particles and watch how fast changing the spin of the first particle affects the one farthest down the line--a bit like standing up a row of dominoes and knocking the first one down to see how fast the chain reaction takes. The team looked at years of others' research and, because the dominoes never seemed to fall as fast as the 2005 prediction suggested, they developed a new mathematical proof that reveals a much tighter limit on how fast quantum information can propagate.

"The tighter a constraint we have, the better, because it means we'll have more realistic expectations of what quantum computers can do," says Foss-Feig.

The limit, their proof indicates, is far closer to the speed limits suggested by the 1970s result.

The proof addresses the rate at which entanglement propagates across quantum systems. Entanglement--the weird linkage of quantum information between two distant particles--is important, because the more quickly particles grow entangled with one another, the faster they can share data. The 2005 results indicated that even if the interaction strength decays quickly with distance, as a system grows, the time needed for entanglement to propagate through it grows only logarithmically with its size, implying that a system could get entangled very quickly. The team's work, however, shows that propagation time grows as a power of its size, meaning that while quantum computers may be able to solve problems that ordinary computers find devilishly complex, their processors will not be speed demons.

"On the other hand, the findings tell us something important about how entanglement works," says Foss-Feig. "They could help us understand how to model quantum systems more efficiently."

###

* M. Foss-Feig, Z.-X. Gong, C.W. Clark and A.V. Gorshkov. Nearly linear light cones in long-range interacting quantum systems. Phys. Rev. Letters, April 13, 2015.

####

For more information, please click here

Contacts:
Chad Boutin

301-975-4261

Copyright © NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project