Home > Press > In situ production of biofunctionalised few-layer defect-free microsheets of graphene
![]() |
Abstract:
This potentially scalable graphene production method has just been published in Advanced Functional Materials by the ICN2 Nanobioelectronics and Biosensors Group, led by ICREA Prof Arben Merkoçi, in collaboration with the Department of Chemical Sciences from University of Naples "Federico II", led by Prof. Paola Giardina. The method consists in the exfoliation of low cost graphite using ultrasonic waves in synergy with a surface active and self-assembling protein extracted from an edible fungus.
The production of defect-free graphene and its biological interfacing are crucial requirements for the biomedical exploitation of graphene. Researchers from the ICN2 have designed a new method for the in situ production of biofunctionalised few-layer defect-free microsheets of this promising nanomaterial. The new method has been developed by the ICN2 Nanobioelectronics and Biosensors Group, led by ICREA Research Prof Arben Merkoçi, in collaboration with the Department of Chemical Sciences from University of Naples "Federico II", led by Prof. Paola Giardina. The first authors of this research are Alfredo M. Gravagnuolo and Dr Eden Morales. The results have been published today in Advanced Functional Materials.
In the study, Prof Merkoçi's Group offers a promising approach that consists in the exfoliation of low cost graphite using ultrasonic waves in synergy with a peculiar surface active and self-assembling protein. Such protein, called Vmh2 hydrophobin, is extracted from the mycelium of the edible fungus Pleurotus ostreatus (commonly known as "oyster mushroom"). The described phenomenon occurs in the liquid phase and allows obtaining bio-hybrid micro-sheets of high quality graphene.
As a potentially scalable approach, this method could enable massive production of biofunctionalised graphene, which could be a valuable material for the upcoming diffusion of new nano-biotechnologies in the global bio-medical market. The obtained product is likely to prove valuable for the emerging applications of graphene in the biotechnological field including nanomedicine, sensing and bioelectronics technologies besides others.
####
For more information, please click here
Contacts:
Alicia Labian
Copyright © ICN2
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |