Home > Press > A first glimpse inside a macroscopic quantum state
![]() |
This is an artist's impression of a beam of entangled photons. CREDIT: ICFO |
Abstract:
In a recent study published in Physical Review Letters and highlighted by the magazine Science News, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam of squeezed light.
Quantum entanglement is always related to the microscopic world, but it also has striking macroscopic effects, such as the squeezing of light or superconductivity, a physical phenomenon that allows high-speed trains to levitate. Squeezed light is not physically compressed but it is it manipulated in such a way that one of its properties is super well defined, for example its polarization. Compared with normal light, laser light, composed of independent photons, has an extremely small but nonzero polarization uncertainty. This uncertainty or "quantum noise" is directly linked to the existence of photons, the smallest energy quanta of light. Now, squeezed light has an uncertainty that is farther below this level. Therefore, in optical communications, squeezed light can help transmit much weaker signals with the same signal to noise ratio and the same light power. It can also be used to distribute secret keys to two distant parties through quantum cryptography.
Although it has long been believed that many macroscopic phenomena are caused by large-scale entanglement, up to now, this link has only been proposed theoretically. On the other hand, current computer simulations of entangled particles have not been able to help discern any new properties regarding this relationship since the memory and processor time required grow exponentially with the number of entangled particles, thus limiting the studies to only a few particles. Albeit these issues, spin-squeezing experiments have been able to claim the observation of many entangled atoms, but these claims are indirect since they have measured the macroscopic properties and used theory to infer the entanglement.
ICREA Prof at ICFO Morgan Mitchell comments, "I am continually amazed by quantum mechanics. When the theoretical predictions came out, saying that there should be a sea of entangled particles inside a squeezed state, I was floored. I knew we had to do an experiment to see this up close".
Now for the first time, ICFO scientists have been able to directly and experimentally confirm this link. To do so, they fabricated a beam of squeezed light, predicted to consist almost entirely of entangled photons. Then they extracted a small number of photons at random and measured their quantum state, in particular the joint polarization state of photon pairs. After overcoming many experimental obstacles, they found, in agreement with theoretical predictions, that any two photons near each other are entangled. By changing the density of the beam, they also observed effects of entanglement monogamy, where particles can be strongly entangled only if they have few entanglement partners. Federica Beduini states that "the experiment was terribly difficult; we had to combine squeezing with entangled-photon detection. There were many unsolved problems. We had to invent many things, like super-narrow optical filters, just to make the experiment possible".
The results of this study show promising advances for other macroscopic many-body systems and quantum gases such as Bose-Einstein condensates for the future study of superconductivity and superfluidity, optical communications, or the research and development of qubits for quantum computing.
####
About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a centre of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists, and provide knowledge and technology transfer. Today, it is one of the top research centres worldwide in its category as measured by international rankings.
Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The institute hosts 300 professionals based in a dedicated building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.
ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program which is financed by Fundación Privada Cellex Barcelona.
For more information, please click here
Contacts:
Alina Hirschmann
34-935-542-246
Copyright © ICFO-The Institute of Photonic Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Research group led by ICREA Prof at ICFO Morgan Mitchell:
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Superconductivity
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Quantum Computing
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |