Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests

Dr. Majid Minary, an assistant professor of mechanical engineering, was senior author of the study.
Dr. Majid Minary, an assistant professor of mechanical engineering, was senior author of the study.

Abstract:
Researchers at the University of Texas at Dallas have created new structures that exploit the electromechanical properties of specific nanofibers to stretch to up to seven times their length, while remaining tougher than Kevlar.

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests

Dallas, TX | Posted on March 27th, 2015

These structures absorb up to 98 joules per gram. Kevlar, often used to make bulletproof vests, can absorb up to 80 joules per gram. The material can reinforce itself at points of high stress and could potentially be used in military airplanes or other defense applications.

In a study published by ACS Applied Materials and Interfaces, a journal of the American Chemical Society, researchers twisted nanofiber into yarns and coils. The electricity generated by stretching the twisted nanofiber formed an attraction 10 times stronger than a hydrogen bond, which is considered one of the strongest forces formed between molecules.

Researchers sought to mimic their earlier work on the piezoelectric action (how pressure forms electric charges) of collagen fibers found inside bone in hopes of creating high-performance materials that can reinforce itself, said Dr. Majid Minary, an assistant professor of mechanical engineering in UT Dallas' Erik Jonsson School of Engineering and Computer Science and senior author of the study.

"We reproduced this process in nanofibers by manipulating the creation of electric charges to result in a lightweight, flexible, yet strong material," said Minary, who is also a member of the Alan G. MacDiarmid NanoTech Institute. "Our country needs such materials on a large scale for industrial and defense applications."

For their experiment, researchers first spun nanofibers out of a material known as polyvinylidene fluoride (PVDF) and its co-polymer, polyvinvylidene fluoride trifluoroethylene (PVDF-TrFE).

Researchers then twisted the fibers into yarns, and then continued to twist the material into coils.

"It's literally twisting, the same basic process used in making conventional cable," Minary said.

Researchers then measured mechanical properties of the yarn and coils such as how far it can stretch and how much energy it can absorb before failure.

"Our experiment is proof of the concept that our structures can absorb more energy before failure than the materials conventionally used in bulletproof armors," Minary said. "We believe, modeled after the human bone, that this flexibility and strength comes from the electricity that occurs when these nanofibers are twisted."

The next step in the research is to make larger structures out of the yarns and coils, Minary said.

###

Other UT Dallas authors on the paper are Mahmoud Baniasadi, Zhe Xu, Yang Xi and Salvador Moreno, all research assistants in the Jonsson School; alumnus Jiacheng Huang; Jason Chang, a biomedical engineering senior; and Dr. Manuel Quevedo-Lopez, professor of materials science and engineering. Dr. Mohammad Naraghi, an assistant professor of aerospace engineering at Texas A&M University, also participated in the work.

The work was funded by the Air Force Office of Scientific Research Young Investigator Research Program and the National Science Foundation.

####

For more information, please click here

Contacts:
LaKisha Ladson

972-883-4183

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project