Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics

The nanopore restricts the the freedom of movement of the adsorbed single molecule thus enabling scientists at Technische Universitat Munchen and University Lingkoping to model the equilibrium thermodynamics of single molecules.
CREDIT: Carlos-Andres Palma / TUM
The nanopore restricts the the freedom of movement of the adsorbed single molecule thus enabling scientists at Technische Universitat Munchen and University Lingkoping to model the equilibrium thermodynamics of single molecules.

CREDIT: Carlos-Andres Palma / TUM

Abstract:
On the search for high performance materials for applications such as gas storage, thermal insulators or dynamic nanosystems it is essential to understand the thermal behavior of matter down to the molecular level. Classical thermodynamics average over time and over a large number of molecules. Within a three dimensional space single molecules can adopt an almost infinite number of states, making the assessment of individual species nearly impossible.

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics

Muenchen, Germany | Posted on February 27th, 2015

Now researchers from Technische Universität München (TUM) and Linköping University (LIU) have developed a methodology, which allows to explore equilibrium thermodynamics of single molecules with atomic resolution at appreciable temperatures. The breakthrough study is based on two pillars: a technology which allows to cage molecules within two-dimensional nanopores and extensive computational modelling.

Trapped in two dimensions

At the Chair of Molecular Nanoscience and Chemical Physics of Interfaces at TU München, led by Prof. Dr. Johannes V. Barth, PD Dr. Florian Klappenberger developed the method to produce high-quality metal-organic networks on a silver surface. The network forms nanopores which restrict the freedom of movement of adsorbed single molecules in two-dimensions. Using scanning tunneling microscopy the researchers were able to track their motions at different temperatures with sub-nanometer resolution.

Parallel to the experiments, the researchers worked with sophisticated computer models to describe the temperature dependence of the dynamics of these single trapped molecules. "We have applied state-of-the-art supercomputer calculations to understand the interactions and energy landscape determining the motion of the molecules", says Jonas Björk of Linköping University.

Comparing experimental and modeled data the scientists unraveled that under certain conditions the integral theory approaches a simple projection of the molecular positions in space. This approach is central to statistical mechanics, but has never before been challenged to reproduce an experiment, due to the practically infinite molecular positions and energies one needed to consider without the nanoscale confinement.

Analogy to biology

"It was extremely exciting to employ two-dimensional networks as a confinement strategy to reduce the available conformational space of a single molecule, like a chaperone does with a protein", says Dr. Carlos-Andres Palma, the lead author of the study. "In analogy to biology, such form of confinement technology has the potential to establish sensors, nanomachines and possibly logics controlled by and made of molecular distributions."

Applying their knowledge of characteristic equilibrium configurations, the researchers carefully modulated the nanopore, thus making a single molecule write letters of the alphabet such as L, I and U, just by fine-tuning the temperature.

###

The research was funded by the European Research Council (ERC Advanced Grant MolArt) and the Swedish Research Council. The Swedish National Supercomputing Center provided supercomputing ressources. The research group of Professor Barth is member of the Catalysis Research Center (CRC) of the TUM.

Publication:

Visualization and thermodynamic encoding of single-molecule partition function projections
Carlos-Andres Palma, Jonas Björk, Florian Klappenberger, Emmanuel Arras, Dirk Kühne, Sven Stafström, Johannes V. Barth
Nature Communications, Feb 23, 2015 - DOI: 10.1038/ncomms7210

####

For more information, please click here

Contacts:
Andreas Battenberg

49-892-891-0510

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project