Home > Press > Real-time observation of bond formation by using femtosecond X-ray liquidography
![]() |
a, The photochemical reaction of solutes supplied by a liquid-flowing system is triggered by a femtosecond optical laser pulse. Subsequently, a time-delayed X-ray pulse synchronized with the laser pulse probes the structural dynamics of the reaction. The scattering pattern is detected by a fast two-dimensional charge-coupled device detector as shown at the bottom. We measure time-resolved scattering patterns while varying the time delay between the laser and X-ray pulses. b, By integrating the two-dimensional scattering pattern azimuthally, subtracting solvent contributions, performing a Fourier transform and compensating for the depletion of the initial solute contribution due to photochemical reaction, we obtain one-dimensional RDFs in real space as shown in the plot at the top left. These display the interatomic distances of transient species and products. In this way, Au-Au bond lengths of the [Au(CN)2-]3 complex can be identified with sub-ångström accuracy, and the time-dependent structural changes of the metal complex can be determined in real time. CREDIT: Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) |
Abstract:
The research team of the Center for Nanomaterials and Chemical Reactions at the Institute for Basic Science (IBS) has successfully visualized the entire process of bond formation in solution by using femtosecond time-resolved X-ray liquidography (femtosecond TRXL) for the first time in the world.
Every researcher's longstanding dream to observe real-time bond formation in chemical reactions has come true. Since this formation takes less than one picosecond, researchers have not been able to visualize the birth of molecules.
The research team has used femtosecond TRXL in order to visualize the formation of a gold trimer complex in real time without being limited by slow diffusion.
They have focused on the process of photoinduced bond formation between gold (Au) atoms dissolved in water. In the ground (S0) state, Au atoms are weakly bound to each other in a bent geometry by van der Waals interactions. On photoexcitation, the S0 state rapidly converts into an excited (S1) state, leading to the formation of covalent Au-Au bonds and bent-to-linear transition. Then, the S1 state changes to a triplet (T1) state with a time constant of 1.6 picosecond, accompanying further bond contraction by 0.1 Å. Later, the T1 state of the trimer transforms to a tetramer on nanosecond time scale, and Au atoms return to their original bent structure.
"By using femtosecond TRXL, we will be able to observe molecular vibration and rotation in the solution phase in real time," says Hyotcherl Ihee, the group leader of the Center for Nanomaterials at IBS, as well as the professor of the Department of Chemistry at Korea Advanced Institute of Science and Technology.
####
For more information, please click here
Contacts:
Sunny Kim
82-428-788-135
Copyright © Institute for Basic Science (IBS)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Physics
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |