Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A breakthrough in nanotoxicology by INRS researchers: Silver nanoparticles and inflammation

Abstract:
Whereas resistance to antibiotics complicates certain treatments, antimicrobial silver nanoparticles (AgNP) are gaining popularity for medical use. These particles are toxic for certain bacteria, but what about for humans? Researchers at INRS-Institut Armand-Frappier Research Centre have taken a step toward understanding the cellular and molecular mechanisms that affect these particles. In an article published in The Journal of Biological Chemistry, Denis Girard's team established for the first time that AgNP induce stress in the endoplasmic reticulum (ER), which is one of the signs of nanotoxicity.

A breakthrough in nanotoxicology by INRS researchers: Silver nanoparticles and inflammation

Québec, Canada | Posted on February 18th, 2015

In their experiment, the researchers used 15 nm AgNP on human monocytes and macrophages, which are among the first cells to interact with foreign bodies. At low concentrations, the AgNP induced stress in the ER, but did not cause cell death. However, higher concentrations did cause a type of programmed cellular death, which is characteristic of certain inflammatory responses.

The research team's results suggest that the AgNP cause degradation of the ER's ATF-6 sensor and activation of the NLRP-3 protein complex. It is the first time that an inflammatory response to AgNP particles in this protein complex has been reported.

Following up on these results, Professor Girard's team will study the ATF-6 molecule more closely in order to better understand the mode of action of various nanoparticles with respect to myeloid cells.

Professor Girard believes these research results using THP-1 cells also open up other research possibilities: "We used leukemia cells throughout most of the study. The question is, could we achieve the same results with other types of cancer cells? If so, it may be possible to use nanoparticles to kill cancer cells without the use of drugs, which would be very promising."

####

About INRS
Institut national de recherche scientifique (INRS) is a graduate-level research and training university and ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors as well as 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally even as it plays a key role in the development of concrete solutions to the problems faced by our society.

For more information, please click here

Contacts:
Stéphanie Thibault

514-499-6612

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

About this publication

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Safety-Nanoparticles/Risk management

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project