Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way

Abstract:
Creating entangled photons is part of the work quantum computing researchers perform in their labs. But for the past 30 years, scientists have been slowed down and frustrated by the large, often finicky machines they've had to use to generate them.

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way

Waterloo, Canada | Posted on February 16th, 2015

Now, a University of Waterloo researcher has invented a device - so small it fits into your hand - that can do the job. And far from being a fussy, difficult machine to operate, the Waterloo device can be tossed around the room - and still work.

A simpler, more efficient way to produce photons

Rolf Horn, a postdoctoral fellow at Waterloo's Institute for Quantum Computing (IQC), invented the device that will be brought to market soon so scientists around the world can use it in their labs. This new device advances quantum research by providing a simpler, more efficient way of producing entangled photons.

"This device is inspirational because it will accelerate quantum inventions and commercialization at IQC and around the world," says Raymond Laflamme, executive director at IQC and mentor to Horn. "We're at the beginning of an era, for IQC and society as a whole, as we start to see the germination of quantum innovations that are ripe for commercialization. We're very proud that all of the work to develop this device was done at IQC."

Waterloo device will save months of time

Thomas Jennewein, an associate professor at IQC who contributed his expertise on entangled photons to the development of the device, said there are hundreds of quantum research groups that could benefit from the invention. "Rolf's pre-aligned, robust, and significantly smaller device fixes a huge flaw in the process of producing entangled photons for quantum research, which will save months of time and work," says Jennewein.

The photons produced by the device are also extremely fragile which, in quantum terms, makes them very secure. If someone attempts to measure one photon, the pair of photons becomes uncorrelated and the user can tell there has been interference. This is a considerable improvement to current information security where keys used to protect data, such as passwords, are becoming easier to crack and users don't know their information is being looked at until it's too late.

Device could improve quantum information security

"Nothing is 100 per cent secure but this invention could improve security dramatically from anything that's available today," says Horn. "Pictures and other data could be encrypted with keys created by this quantum source. You would then be notified if someone tried to look at these keys, and you could stop sending sensitive information immediately."

Assisted by the Waterloo Commercialization Office (WatCo), Horn and his team received a Natural Sciences and Engineering Research Council of Canada (NSERC) Idea to Innovation Grant allowing the team to work with industry partners to build the hardware, optimize the device's system, and prepare the invention for commercialization.

####

For more information, please click here

Contacts:
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
+1 519 888 4567

Copyright © University of Waterloo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project