Home > Press > Heating targeted cancer drugs increases uptake in tumour cells
![]() |
Liposomes |
Abstract:
Manchester scientists have found that gentle heating of targeted nano-sized drug parcels more effectively in deliver them to tumour cells - resulting in an improvement in survival rates.
One of the clinically-established methods for the delivery of cancer chemotherapy drugs has been to package the drug inside nano-sized containers, known as liposomes. This allows the drug to more effectively localise into cancer tissue and reduces side-effects by limiting drug-infused liposome uptake in healthy cells.
The effectiveness of these liposomes has been further improved by engineering them to contain molecules (monoclonal antibodies) on their surface that allow them to better target cancer cells in combination to making them temperature-sensitive so that they release their therapeutic drug content upon mild heating.
Researchers from the Nanomedicine Laboratory at The University of Manchester - part of the Manchester Cancer Research Centre - looked at the benefits of combining both active targeting and temperature-triggered release.
Professor Kostas Kostarelos, who led the research, said: "We have previously seen promising results from this combination approach on a petri dish, but no study had yet investigated its potential in living tissue."
The team compared liposomes with and without the ability to actively target cancer cells. They found that in combination with mild heating, the actively targeted liposomes showed greater uptake in tumour tissue in mice than those without targeting ability.
This resulted in a moderate improvement in the animals' survival.
"We have successfully developed heat-activated and antibody-targeted liposomes to show that they are chemically and structurally stable. This approach may help us develop novel mechanistic strategies to improve targeted drug delivery and release within tumour tissue, while better sparing normal cells," added Professor Kostarelos.
Full bibliographic information
"Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tumor chemotherapeutics in combination with mild hyperthermia" Z S Al-Ahmady et al. Volume 196, 28 December 2014, Pages 332-343, Journal of Controlled Release
####
About Manchester University
Higher Education Institution
For more information, please click here
Contacts:
Jamie Brown
Media Relations Officer
The University of Manchester
Tel:44 0161 2758383
Mob:44 07887 561318
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Cancer
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |