Home > Press > Electronics you can wrap around your finger: A new multiferroric film keeps its electric and magnetic properties even when highly curved, paving the way for potential uses in wearable devices
![]()  | 
| This electron microscope image shows tiny nanoparticles of bismuth ferrite embedded in a polymer film. The film enhances the unique electric and magnetic properties of bismuth ferrite and preserves these properties even when bent.
 CREDIT: YoungPak Lee/ Hanyang University  | 
Abstract:
Electronic devices have shrunk rapidly in the past decades, but most remain as stiff as the same sort of devices were in the 1950s -- a drawback if you want to wrap your phone around your wrist when you go for a jog or fold your computer to fit in a pocket. Researchers from South Korea have taken a new step toward more bendable devices by manufacturing a thin film that keeps its useful electric and magnetic properties even when highly curved. The researchers describe the film in a paper published in the journal Applied Physics Letters, from AIP Publishing.
Flexible electronics have been hard to manufacture because many materials with useful electronic properties tend to be rigid. Researchers have addressed this problem by taking tiny bits of materials like silicon and embedding them in flexible plastics.
A team of physicists and engineers from South Korea took the same approach with bismuth ferrite (BiFeO3) -- one of the most promising materials whose electronic properties can be controlled by a magnetic field, and vice versa. Such materials are called multiferroics and attract interest for applications like energy efficient, instant-on computing.
The researchers synthesized nanoparticles of bismuth ferrite and mixed them into a polymer solution. The solution was dried in a series of steps at increasing temperatures to produce a thin, flexible film.
When the researchers tested the electric and magnetic properties of the film they found that their new material did much more than preserve the useful properties of bulk bismuth ferrite -- it actually made them better. And the improved properties remained even as the film was curved into a cylindrical shape.
"Bulk bismuth ferrite has crucial problems for some applications, such as a high leakage current which hinders the strong electric properties," said YoungPak Lee, a professor at Hanyang University in Seoul, South Korea. Mixing nanoparticles of bismuth ferrite into a polymer improved the current-leakage problem, he said, and also gave the film flexible, stretchable properties.
Flexible multiferrorics could enable new wearable devices such as health monitoring equipment or virtual reality attire, Lee said. The multiferroric materials could be used in high-density, energy efficient memory and switches in such devices, he said.
Before the new films make their debut in wearable tech, the researchers are working to further improve their multiferroic properties, as well as exploring even more flexible materials.
The authors of this paper are affiliated with Hanyang University, Seoul National University and Hankuk University of Foreign Studies.
####
About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: apl.aip.org
For more information, please click here
Contacts:
Jason Socrates Bardi
240-535-4954
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Flexible Electronics
    Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
    Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||