Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA 'cage' could improve nanopore technology

A nanoscale cage
An electrical field draws a strand of DNA in by the smaller hole, bottom, but the curled DNA cannot exit through the larger hole, top. After experimental procedures, a reversed electrical field draws the DNA strand back out of the lower hole, allowing before and after comparison.
Stein lab/Brown University
A nanoscale cage An electrical field draws a strand of DNA in by the smaller hole, bottom, but the curled DNA cannot exit through the larger hole, top. After experimental procedures, a reversed electrical field draws the DNA strand back out of the lower hole, allowing before and after comparison.

Stein lab/Brown University

Abstract:
Despite having a diameter tens of thousands of times smaller than a human hair, nanopores could be the next big thing in DNA sequencing. By zipping DNA molecules through these tiny holes, scientists hope to one day read off genetic sequences in the blink of an eye.

DNA 'cage' could improve nanopore technology

Providence, RI | Posted on February 10th, 2015

Now, researchers from Brown University have taken the potential of nanopore technology one step further. They have combined a nanopore with a tiny cage capable of trapping and holding a single DNA strand after it has been pulled through the pore. While caged, biochemical experiments can be performed on the strand, which can then be zipped back through the nanopore to look at how the strand has changed.

"We see this as a very interesting enabling technique," said Derek Stein, associate professor of physics and engineering at Brown, who helped develop the technology with his graduate students. "It allows you for the first time to look at the same molecule before and after any kind of chemical reaction that may have taken place."

A paper describing the device is published in Nature Communications.

The device looks a bit like a miniscule hollowed-out hockey puck. On one flat side is a nanopore, and on the other side is a somewhat larger hole. When immersed in a solution containing DNA, an electric current across the nanopore grabs a single strand and pulls it into the hollow chamber. Once there, the strand has a natural tendency to curl into a tangled ball. That ball is too large to fit out of the hole on the other side, but that hole can be used to introduce additional molecules that might react with the trapped DNA. Once a reaction has occurred, the electric current is reversed and the strand is sent back out through the pore, which can look for changes in the strand.

"What we've made is basically a very small test tube," said Xu Liu, who led the work while he was a graduate student at Brown. "We can do biochemistry on the single strand in that very confined space."

The key to the technology, Liu said, was making that test tube small, but not too small. If it were too small, the DNA wouldn't have enough room to curl up, which would cause it to squirt out the hole at the top of the device. Using some theoretical calculations and a bit of trial and error, the researchers settled on a cage that's about 1.5 micrometers square.

Liu then tested the technology using what's called a restriction enzyme, which cuts DNA molecules at particular sequences. After an intact DNA molecule was pulled through the pore into the cage, the researchers applied the enzyme through the hole in the top of the device. If all went as planned, the enzyme should have cut the strand into four pieces. When they pulled the molecule back through pore, they detected four distinct signals, indicating that the experiment had worked as expected.

The researchers say the device could be used for all kinds of experiments with DNA. For example, scientists use molecules called hybridization probes to look for specific sequences in a DNA molecule. The probes bind to target sequences, creating a bulge in the DNA strand that a nanopore could easily detect.

"There was always a problem of knowing what the DNA looked like before the probe was applied," Stein said. "This is a way of making sure you can measure the same molecule before anything is done to it, and then after. That wasn't possible before with nanopores because the molecule would drift away."

###

Liu, who recently received his Ph.D. at Brown, is now working at a nanopore start-up company, where he plans to continue to develop the technology.

The research was supported by the National Science Foundation (CBET0846505) and by Oxford Nanopore Technologies Ltd.

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project