Home > Press > New understanding of electron behavior at tips of carbon nanocones could help provide candidates
![]()  | 
Abstract:
One of the ways of improving electrons manipulation is though better control over one of their inner characteristics, called spin. This approach is the object of an entire field of study, known as spintronics. Now, Richard Pincak from the Slovak Academy of Sciences and colleagues have just uncovered new possibilities for manipulating the electrons on the tips of graphitic nanocones. Indeed, in a study published in EPJ B, they have shown that because the tip area offers the greatest curvature, it gives rise, in the presence of defects, to an enhanced manifestation of a phenomenon called spin-orbit interaction. This, in turn, affects its electronic characteristics. These nanocones could thus become candidates for a new type of scanning probe in atomic force microscopy.
One of the ways of improving electrons manipulation is though better control over one of their inner characteristics, called spin. This approach is the object of an entire field of study, known as spintronics. Now, Richard Pincak from the Slovak Academy of Sciences and colleagues have just uncovered new possibilities for manipulating the electrons on the tips of graphitic nanocones. Indeed, in a study published in EPJ B, they have shown that because the tip area offers the greatest curvature, it gives rise, in the presence of defects, to an enhanced manifestation of a phenomenon called spin-orbit interaction. This, in turn, affects its electronic characteristics. These nanocones could thus become candidates for a new type of scanning probe in atomic force microscopy.
####
For more information, please click here
Contacts:
Joan Robinson
49-622-148-78130
Copyright © Springer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Imaging
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
    Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
    Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||