Home > Press > An end to the medicine dropper for eye injuries?
![]() |
A drug-infused wafer worn like a contact lens could work better than eye drops. Credit: American Chemical Society |
Abstract:
For years, treating scratches and burns to the eyes has usually involved dropping medicine onto the eyes several times a day, sometimes for weeks -- a treatment that lends itself to missed doses and other side effects. But scientists are now reporting in the journal ACS Nano a novel, drug-releasing wafer that patients can put directly on their affected eyes just once a day. The team says the device works better than drops and could help patients recover faster.
Ghanashyam Acharya, Stephen C. Pflugfelder and colleagues point out that eye injuries are a major cause of blindness worldwide. In the U.S., about 2.5 million people suffer such an injury every year. But typical eye drop therapies are not very efficient. Blinking and tears clear the medicine quickly from the eyes, so patients have to apply drops several times a day. But this frequency boosts the risks for side effects, including inflammation and blurred vision, and makes it likely that patients will miss doses. Researchers have tried many approaches to address these problems, but none so far have worked well.
In a new approach, Acharya's team developed a clear, round film -- which for humans would be about one-tenth the size of a typical contact lens -- embedded with tiny pockets that can hold and release medicine slowly over time. The film then dissolves completely. In mice, the wafer was twice as effective as eye drops and didn't cause inflammation that can lead to side effects. The team concludes that the wafer could be used to treat eye injuries and other conditions such as chronic dry eye and glaucoma.
###
The authors acknowledge funding from the U.S. Department of Defense.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Ghanashyam Acharya, Ph.D.
Cullen Eye Institute
Department of Ophthalmology
Baylor College of Medicine
Houston, TX 77030
Phone: 713-798-7701
or
Stephen C. Pflugfelder, M.D.
Cullen Eye Institute
Department of Ophthalmology
Baylor College of Medicine
Houston, TX 77030
Phone: 713-798-7701
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |