Home > Press > New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes
![]() |
This schematic illustrates the concepts involved in the cycling excitation process. CREDIT:Yuchun Zhou/UCSD |
Abstract:
Signal amplification is ubiquitous to all electronic and optoelectronic systems for communications, imaging and computing - its characteristics directly impact device performance.
A new signal amplification process discovered by a team of University of California, San Diego researchers is now poised to fuel new generations of electrical and photonic devices - transforming the fields of communications, imaging and computing. In the journal Applied Physics Letters, from AIP Publishing, the team describes their work behind this discovery.
"For many years, the semiconductor industry has relied on photodetectors for optoelectrical conversion, followed by low-noise electronic amplifiers to convert optical signals into electronic signals with amplification to enable information detection and processing," explained Yu-Hwa Lo, a professor of electrical and computer engineering at the University of California, San Diego.
It's also widely recognized that the highest sensitivity can be achieved by combining an electronic amplifier with a photodetector that uses an internal amplification mechanism to optimally balance out the thermal noise of the electronic amplifier and the shot noise, a type of noise in the photodetector that arises because of the particle nature of light.
"Following this established principle, avalanche photodetectors that use impact ionization became the devices of choice and have remained so for many decades," Lo noted. Impact ionization, however, has drawbacks such as high operation voltage - typically 30 to 200V - and rapidly increasing noise with amplification.
So the team searched for a more efficient intrinsic amplification mechanism for semiconductors to amplify the photocurrent at much lower voltage and noise than the current method.
"Thanks to insights of the complex interactions among electrons in localized and extended states and phonons (a unit of vibrational energy that arises from oscillating atoms within a crystal), we've discovered a far more efficient mechanism - the cycling excitation process (CEP) - to amplify the signal," Lo said.
Ready to delve into the technical concepts involved? The device primarily has a p/n junction (a boundary between two semiconductor materials within a single crystal of semiconductor) similar to those found in semiconductor devices. "The only unique feature is that both sides of the p/n junction contain a substantial amount of counter doping - a large number of donors exist in the p-region, with acceptors in the n-region," explained Lo. Such a structure is called a "heavily compensated p/n junction."
Counter impurities in the compensated p/n junction are responsible for the team's highly efficient signal (photocurrent) amplification process. Electrons or holes crossing the depletion region gain kinetic energy and, in turn, excite new electron-hole pairs using the compensating impurities (donors in the p-side and acceptors in the n-side) as intermediate states.
"An energetic electron, for example, can excite an electron from an occupied acceptor to the conduction band, while a phonon is absorbed subsequently to fill the acceptor with an electron from the valence band - producing a hole in the valence band to complete the generation of an electron-hole pair," said Yuchun Zhou, first author of the paper and a doctoral student in Lo's group. "This type of process occurs on both sides of the p/n junction and forms cycles of electron-hole excitation to produce high gain."
The key discovery and innovation for the amplification process is to use the compensating impurities as the intermediate steps for electron-hole pair generation. "Impurity states are localized, so the conservation of momentum that limits the efficiency for conventional impact ionization can be greatly relaxed and leads to higher signal amplification efficiency and reduced operation voltage," added Lo.
Most striking implication of the team's discovery? "Perhaps that an entirely new physical mechanism can be found in the most common device structure - a p/n junction - that has been used since the semiconductor industry's heyday," said Lo. "It appears that a small modification, such as heavy doping compensation, from a common structure can be used to take advantage of the unusual physical process that results from concerted interactions between electrons in extended and localized (impurity) states and phonons."
With further improvements, according to the team, the discovered signal amplification mechanism can be used in a wide variety of devices and semiconductors - presenting a new paradigm for the semiconductor industry.
"With an efficient gain mechanism at an operation voltage compatible with CMOS integrated circuits, it's possible to produce communication and imaging devices with superior sensitivity at a low cost," Lo pointed out. "By using other methods along with optical excitation to produce the seed carriers that initiate the cycling excitation process, we can conceive new types of transistors and circuits and extend the scope of applications beyond optical detection."
####
About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: apl.aip.org
For more information, please click here
Contacts:
Jason Socrates Bardi
240-535-4954
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Optical computing/Photonic computing
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |