Home > Press > Nanotechnology Used to Produce Ceramic Membrane with High Thermal Stability
Abstract:
Iranian researchers used nanotechnology to produce a new type of ceramic membrane with high thermal stability.
The membrane has nanometric pores and was produced through a simple and cost-effective method.
Ceramic membranes are usually used in pharmaceutics, foodstuff industries and chemicals and petrochemicals for the separation of small gases such as He, H2, N2 and CH4. The main problem in the application of these types of membranes is their instability in humid and hot places. This problem rearranges the porous structure and decreases the performance of the membranes.
In this research, efforts have been made to increase thermal stability of the silicate ceramic membrane as well as preserving its nanoporous structure by adding yttrium oxide to change the structure of the membrane. Physical and chemical structure of a membrane determines its important characteristics, including diffusivity, selectivity or sedimentation. It is possible to create a desirable structure by the simple method of elimination of problems on the surface of the membrane and by controlling the concentration of raw materials and the process temperature.
Alpha-alumina substrate was prepared through the pressing of alumina powder method and thermal cooking in form of tablets. Colloid and polymeric sols were deposited on the substrate to create the middle layer of gamma-alumina and the membrane layer of silica/ytteria through immersion method.
Results of the research have been published in Ceramics International, vol. 40, issue 7, 2014, pp. 9403-9411.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Food/Agriculture/Supplements
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |