Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New “triggered-release” mechanism could improve drug delivery

'Parent' Nanoparticle to 'Daughter' - A series of transmission electron microscopy (TEM) images that show the transition from the 'parent' cylindrical nanoparticles to the spherical 'daughter' nanoparticles
'Parent' Nanoparticle to 'Daughter' - A series of transmission electron microscopy (TEM) images that show the transition from the 'parent' cylindrical nanoparticles to the spherical 'daughter' nanoparticles

Abstract:
More efficient medical treatments could be developed thanks to a new method for triggering the rearrangement of chemical particles.

New “triggered-release” mechanism could improve drug delivery

Coventry, UK | Posted on January 17th, 2015

The new method, developed at the University of Warwick, uses two ‘parent' nanoparticles that are designed to interact only when in proximity to each other and trigger the release of drug molecules contained within both.

The release of the drug molecules from the ‘parent' nanoparticles could subsequently form a third ‘daughter' particle, which comprises molecules from both ‘parent' nanoparticles.

The researchers, led by Professors Andrew Dove and Rachel O'Reilly, suggest that this new mechanism could potentially limit side-effects by only releasing the drug where required:

"We conceive that in the blood stream the particles would not be able to interact sufficiently to lead to release, only when they are taken into cells would the release be able to happen", says Professor Dove. "In this way, the drug can be targeted to only release where we want it to and therefore be more effective and reduce side effects".

The chemical composition of the two ‘parent' nanoparticles is crucial to the new method. Professor Dove explains:

"The two ‘parent' nanoparticles used in the new mechanism are cylindrical in shape and are made from polymer chains that differ only by the way in which chemical bonds are directed within a part of the structure.

"When the two ‘parent' nanoparticles are in close enough proximity the polymer chains are driven to come together to form a new ‘daughter' nanoparticle by a phenomenon known as stereocomplexation.

"In the process of this rearrangement, we propose that any molecules, such as drug molecules, that are encapsulated within the parent particles will be released."

Published in journal Nature Communications the research, Structural reorganisation of cylindrical nanoparticles triggered by polylactide stereocomplexation, could "raise new possibilities in how we can administer medical treatments", says Professor Dove. "We're planning to study this as a new treatment for cancer but the principle could potentially be applied to a wide range of diseases."

####

About University of Warwick
The University of Warwick is consistently ranked in the Top Ten UK Universities.

For more information, please click here

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project