Home > Press > Application of Stronger Ceramic Nanostructures in Tissue Engineering
Abstract:
Iranian researchers gained new achievements in increasing the strength of ceramic materials to be used in tissue engineering.
This study suggests the application of nanoparticles that increase the biodegradability of implants and the required strength.
Forsterite (Mg2SiO4) is one of the novel bio-ceramics that is used in tissue engineering, specially in bone tissue. Forsterite nanoparticles are bioactive and help the natural tissue of the bone to recover the damaged bone through Osteo-conduction method. This research studies the mechanisms to increase mechanical strength and modify biological properties of the substance.
To this end, forsterite nanoparticles with dimensions less than 50 nm have been used in the production of desired scaffold. The proposed method for the production of bone scaffold is two-step sintering or cooking with controlled and adjustable thermal shelf time. This method increases bioactivity and biodegradability of the product and the mechanical strength of the structure.
Due to the low mechanical strength of materials, including hydroxyapatite, the application of these materials has been limited in tissue engineering. That is why the production of scaffolds made of forsterite nanostructures with optimum mechanical strength and properties (such as bioactivity and biological sorption) is considered an evolution in the production of scaffolds in hard tissue engineering.
Results of the research have been published in Ceramics International, vol. 41, issue 1, Part B, 2015, pp. 1361-1365.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||