Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New catalyst process uses light, not metal, for rapid polymerization: UC Santa Barbara researchers develop a metal-free atom transfer radical polymerization process that uses an organic-based photocatalyst

Metal-free atom transfer radical polymerization uses an organic-based photocatalyst.
CREDIT: Peter Allen, UCSB
Metal-free atom transfer radical polymerization uses an organic-based photocatalyst.

CREDIT: Peter Allen, UCSB

Abstract:
A team of chemistry and materials science experts from University of California, Santa Barbara and The Dow Chemical Company has created a novel way to overcome one of the major hurdles preventing the widespread use of controlled radical polymerization.

New catalyst process uses light, not metal, for rapid polymerization: UC Santa Barbara researchers develop a metal-free atom transfer radical polymerization process that uses an organic-based photocatalyst

Santa Barbara, CA | Posted on January 12th, 2015

In a global polymer industry valued in the hundreds of billions of dollars, a technique called Atom Transfer Radical Polymerization is emerging as a key process for creating well-defined polymers for a vast range of materials, from adhesives to electronics. However, current ATRP methods by design use metal catalysts, a major roadblock to applications for which metal contamination is an issue, such as materials used for biomedical purposes.

This new method of radical polymerization doesn't involve heavy metal catalysts like copper. Their innovative, metal-free ATRP process uses an organic-based photocatalyst--and light as the stimulus for the highly controlled chemical reaction.

"The grand challenge in ATRP has been: how can we do this without any metals?" said Craig Hawker, Director of the Dow Materials Institute at UC Santa Barbara. "We looked toward developing an organic catalyst that is highly reducing in the excited state, and we found it in an easily prepared catalyst, phenothiazine."

"It's "drop-in" technology for industry," said Javier Read de Alaniz, principal investigator and professor of chemistry and biochemistry at UC Santa Barbara. "People are already used to the same starting materials for ATRP, but now we have the ability to do it without copper." Copper, even at trace levels, is a problem for microelectronics because it acts as a conductor, and for biological applications because of its toxicity to organisms and cells.

Read de Alaniz, Hawker, and postdoctoral research Brett Fors, now with Cornell University, led the study that was initially inspired by a photoreactive Iridium catalyst. Their study was recently detailed in a paper titled "Metal-Free Atom Transfer Radical Polymerization," published in the Journal of the American Chemical Society. The research was made possible by support from Dow, a research partner of the UCSB College of Engineering.

ATRP is already used widely across dozens of major industries, but the new metal-free rapid polymerization process "pushes controlled radical polymerization into new areas and new applications," according to Hawker. "Many processes in use today all start with ATRP. Now this method opens doors for a new class of organic-based photoredox catalysts."

Controlling radical polymerization processes is critical for the synthesis of functional block polymers. As a catalyst, phenothiazine builds block copolymers in a sequential manner, achieving high chain-end fidelity. This translates into a high degree of versatility in polymer structure, as well as an efficient process.

"Our process doesn't need heat. You can do this at room temperature with simple LED lights," said Hawker. "We've had success with a range of vinyl monomers, so this polymerization strategy is useful on many levels."

"The development of living radical processes, such as ATRP, is arguably one of the biggest things to happen in polymer chemistry in the past few decades," he added. "This new discovery will significantly further the whole field."

####

For more information, please click here

Contacts:
Melissa Van De Werfhorst

805-893-4391

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project