Home > Press > New catalyst process uses light, not metal, for rapid polymerization: UC Santa Barbara researchers develop a metal-free atom transfer radical polymerization process that uses an organic-based photocatalyst
Metal-free atom transfer radical polymerization uses an organic-based photocatalyst.
CREDIT: Peter Allen, UCSB |
Abstract:
A team of chemistry and materials science experts from University of California, Santa Barbara and The Dow Chemical Company has created a novel way to overcome one of the major hurdles preventing the widespread use of controlled radical polymerization.
In a global polymer industry valued in the hundreds of billions of dollars, a technique called Atom Transfer Radical Polymerization is emerging as a key process for creating well-defined polymers for a vast range of materials, from adhesives to electronics. However, current ATRP methods by design use metal catalysts, a major roadblock to applications for which metal contamination is an issue, such as materials used for biomedical purposes.
This new method of radical polymerization doesn't involve heavy metal catalysts like copper. Their innovative, metal-free ATRP process uses an organic-based photocatalyst--and light as the stimulus for the highly controlled chemical reaction.
"The grand challenge in ATRP has been: how can we do this without any metals?" said Craig Hawker, Director of the Dow Materials Institute at UC Santa Barbara. "We looked toward developing an organic catalyst that is highly reducing in the excited state, and we found it in an easily prepared catalyst, phenothiazine."
"It's "drop-in" technology for industry," said Javier Read de Alaniz, principal investigator and professor of chemistry and biochemistry at UC Santa Barbara. "People are already used to the same starting materials for ATRP, but now we have the ability to do it without copper." Copper, even at trace levels, is a problem for microelectronics because it acts as a conductor, and for biological applications because of its toxicity to organisms and cells.
Read de Alaniz, Hawker, and postdoctoral research Brett Fors, now with Cornell University, led the study that was initially inspired by a photoreactive Iridium catalyst. Their study was recently detailed in a paper titled "Metal-Free Atom Transfer Radical Polymerization," published in the Journal of the American Chemical Society. The research was made possible by support from Dow, a research partner of the UCSB College of Engineering.
ATRP is already used widely across dozens of major industries, but the new metal-free rapid polymerization process "pushes controlled radical polymerization into new areas and new applications," according to Hawker. "Many processes in use today all start with ATRP. Now this method opens doors for a new class of organic-based photoredox catalysts."
Controlling radical polymerization processes is critical for the synthesis of functional block polymers. As a catalyst, phenothiazine builds block copolymers in a sequential manner, achieving high chain-end fidelity. This translates into a high degree of versatility in polymer structure, as well as an efficient process.
"Our process doesn't need heat. You can do this at room temperature with simple LED lights," said Hawker. "We've had success with a range of vinyl monomers, so this polymerization strategy is useful on many levels."
"The development of living radical processes, such as ATRP, is arguably one of the biggest things to happen in polymer chemistry in the past few decades," he added. "This new discovery will significantly further the whole field."
####
For more information, please click here
Contacts:
Melissa Van De Werfhorst
805-893-4391
Copyright © University of California - Santa Barbara
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||