Home > Press > 'Mind the gap' between atomically thin materials
![]()  | 
Abstract:
When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists.
The gap is a miniscule vacuum that researchers in Penn State's Center for 2-Dimensional and Layered Materials believe is an energy barrier keeping electrons from easily crossing from one layer of material to the next.
"We're still trying to understand how electrons move vertically through these layered materials, and we thought it should take a lot less energy," said Joshua Robinson, assistant professor of materials science and engineering and associate director of the 2DLM Center. "Thanks to a combination of theory and experiment, we now know we have to account for this gap when we design new materials."
For the first time, the Penn State researchers grew a single atomic layer of tungsten diselenide on a one- atom-thick substrate of graphene with pristine interfaces between the two layers. When they tried to put a voltage from the top tungsten diselenide layer down to the graphene layer, they encountered a surprising amount of resistance. About half of the resistance was caused by the gap, which introduced a large barrier, about 1 electron volt, to the electrons trying to move between layers. This energy barrier could prove useful in designing next generation electronic devices, such as vertical tunneling field effect transistors, said Robinson.
The interest in this type of material arose with the discovery of methods to make single layer graphite. The Penn State researchers use a more scalable method than early graphene makers -- chemical vapor deposition -- to deposit a single layer of crystalline tungsten diselenide on top of a few layers of graphene grown from silicon carbide.
Although graphene research exploded in the last decade, many similar solids exist that can combine to create entirely new artificial materials with unimaginable properties.
The researchers discovered that the tungsten diselenide layer grew in perfectly aligned triangular islands 1 to 3 microns in size that slowly coalesced into a single crystal up to 1 centimeter square. They reported their results in Nano Letters.
Robinson believes it will be possible to grow these crystals to industrially useful wafer-scale sizes, although it will require a larger furnace than he currently has in his lab.
"One of the really interesting things about this gap," Robinson said, "is that it allows us to grow aligned layers despite the fact that the atoms in the graphene are not lined up with the atoms in the tungsten diselenide. In fact there is a 23 percent lattice mismatch, which is huge."
###
Yu-Chuan Lin, a graduate student in materials science and engineering is lead author on the paper. Other Penn State coauthors were Ram Krishna Ghosh, post-doctoral fellow in electrical engineering; Jie Li, post-doctoral fellow; and Theresa S. Mayer and Suman Datta, professors, all in electrical engineering.
Lain-Jong Li of the Institute of Atomic and Molecular Sciences, Taiwan; Jeremy Robinson, researcher in the Naval Research Laboratory and Joshua Robinson's brother, also worked on this project as did Bogdan Diaconescu and Taisuke Ohta of the Sandia National Laboratory and Robert Wallace, professor and Erik Jonsson Distinguished Chair, Department of Materials Science and Engineering, and his students Hui Zhu, Rafik Addou, Xin Peng, Ning Lu and Moon J. Kim from The University of Texas at Dallas.
The Defense Advance Projects Agency; Semiconductor Corporation; National Institute of Standards and Technology; Office of Naval Research; U.S. Department of Energy; Academic Sinica, Taiwan; King Abdullah University of Science and Technology; U.S. Air Force Research Laboratory; and the National Science Foundation supported this work.
####
For more information, please click here
Contacts:
A'ndrea Elyse Messer
814-865-9481
Copyright © Penn State
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Laboratories
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Physics
    Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Graphene/ Graphite
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Molecular Nanotechnology
    Quantum pumping in molecular junctions August 16th, 2024
    Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
    First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||