Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time

Fluorescent amyloid beta oligomers (green), bound to cultured hippocampal neurons, were detected with greater than 90 percent accuracy by the magnetic nanostructure probe (red).Adapted from Viola et al., Nature Nanotechnology, 2014.
Fluorescent amyloid beta oligomers (green), bound to cultured hippocampal neurons, were detected with greater than 90 percent accuracy by the magnetic nanostructure probe (red).

Adapted from Viola et al., Nature Nanotechnology, 2014.

Abstract:
No methods currently exist for the early detection of Alzheimer's disease, which affects one out of nine people over the age of 65. Now, an interdisciplinary team of Northwestern University scientists and engineers has developed a noninvasive MRI approach that can detect the disease in a living animal. And it can do so at the earliest stages of the disease, well before typical Alzheimer's symptoms appear.

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time

Evanston, IL | Posted on December 22nd, 2014

Led by neuroscientist William L. Klein and materials scientist Vinayak P. Dravid, the research team developed an MRI (magnetic resonance imaging) probe that pairs a magnetic nanostructure (MNS) with an antibody that seeks out the amyloid beta brain toxins responsible for onset of the disease. The accumulated toxins, because of the associated magnetic nanostructures, show up as dark areas in MRI scans of the brain.

This ability to detect the molecular toxins may one day enable scientists to both spot trouble early and better design drugs or therapies to combat and monitor the disease. And, while not the focus of the study, early evidence suggests the MRI probe improves memory, too, by binding to the toxins to render them "handcuffed" to do further damage.

"We have a new brain imaging method that can detect the toxin that leads to Alzheimer's disease," said Klein, who first identified the amyloid beta oligomer in 1998. He is a professor of neurobiology in the Weinberg College of Arts and Sciences.

"Using MRI, we can see the toxins attached to neurons in the brain," Klein said. "We expect to use this tool to detect this disease early and to help identify drugs that can effectively eliminate the toxin and improve health."

With the successful demonstration of the MRI probe, Northwestern researchers now have established the molecular basis for the cause, detection by non-invasive MR imaging and treatment of Alzheimer's disease. Dravid introduced this magnetic nanostructure MRI contrast enhancement approach for Alzheimer's following his earlier work utilizing MNS as smart nanotechnology carriers for targeted cancer diagnostics and therapy. (A MNS is typically 10 to 15 nanometers in diameter; one nanometer is one billionth of a meter.)

Details of the new Alzheimer's disease diagnostic are published today (Dec. 22) by the journal Nature Nanotechnology. Klein and Dravid are co-corresponding authors.

The emotional and economic impacts of Alzheimer's disease are devastating. This year, the direct cost of the disease in the United States is more than $200 billion, according to the Alzheimer's Association's "2014 Alzheimer's Disease Facts and Figures." By the year 2050, that cost is expected to be $1.1 trillion as baby boomers age. And these figures do not account for the lost time of caregivers.

This new MRI probe technology is detecting something different from conventional technology: toxic amyloid beta oligomers instead of plaques, which occur at a stage of Alzheimer's when therapeutic intervention would be very late. Amyloid beta oligomers now are widely believed to be the culprit in the onset of Alzheimer's disease and subsequent memory loss.

In a diseased brain, the mobile amyloid beta oligomers attack the synapses of neurons, destroying memory and ultimately resulting in neuron death. As time progresses, the amyloid beta builds up and starts to stick together, forming the amyloid plaques that current probes target. Oligomers may appear more than a decade before plaques are detected.

"Non-invasive imaging by MRI of amyloid beta oligomers is a giant step forward towards diagnosis of this debilitating disease in its earliest form," said Dravid, the Abraham Harris Professor of Materials Science and Engineering at the McCormick School of Engineering and Applied Science.

There is a major need for what the Northwestern research team is doing -- identifying and detecting the correct biomarker for new drug discovery. Despite extraordinary efforts, no effective drugs exist yet for Alzheimer's disease.

"This MRI method could be used to determine how well a new drug is working," Dravid said. "If a drug is effective, you would expect the amyloid beta signal to go down."

The nontoxic MRI probe was delivered intranasally to mouse models with Alzheimer's disease and control animals without the disease. In animals with Alzheimer's, the toxins' presence can be seen clearly in the hippocampus in MRI scans of the brain. No dark areas, however, were seen in the hippocampus of the control group.

The ability to detect amyloid beta oligomers, Klein said, is important for two reasons: amyloid beta oligomers are the toxins that damage neurons, and the oligomers are the first sign of trouble in the disease process, appearing before any other pathology.

Klein, Dravid and their colleagues also observed that the behavior of animals with Alzheimer's improved even after receiving a single dose of the MRI probe.

"While preliminary, the data suggests the probe could be used not only as a diagnostic tool but also as a therapeutic," said Kirsten L. Viola, a co-first author of the study and a research manager in Klein's laboratory.

Along with the studies in live animals, the research team also studied human brain tissue from Northwestern's Cognitive Neurology and Alzheimer's Disease Center. The samples were from individuals who died from Alzheimer's and those who did not have the disease. After introducing the MRI probe, the researchers saw large dark areas in the Alzheimer brains, indicating the presence of amyloid beta oligomers.

The title of the paper is "Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease."

In addition to Klein, Dravid and Viola, other authors of the paper are from Northwestern University; Universidade Federal de Santa Catarina, Brazil; Illinois Mathematics and Science Academy; and North Shore University Health Systems.

Editor's note: Northwestern University holds the rights to two U.S. and several international patents concerning antibodies that target amyloid beta oligomers. Acumen Pharmaceuticals holds the licensing rights to develop anti-amyloid beta oligomer antibodies for therapeutic use. William L. Klein is a founder of Acumen Pharmaceuticals, Inc. and serves as a member of its scientific advisory board.

Northwestern also has filed an intellectual property/patent application based on magnetic nanostructure (MNS) for diagnostic imaging and therapy for Alzheimer's disease and cancer.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project