Home > Press > Study details laser pulse effects on behavior of electrons
Jean Marcel Ngoro Djiokap (left) and Anthony Starace photo: Scott Schrage | University Communications |
Abstract:
By solving a six-dimensional equation that had previously stymied researchers, University of Nebraska-Lincoln physicists have pinpointed the characteristics of a laser pulse that yields electron behavior they can predict and essentially control.
It's long been known that laser pulses of sufficient intensity can produce enough energy to eject electrons from their ultrafast orbits around an atom, causing ionization.
An international team led by the UNL researchers has demonstrated that the angles at which two electrons launch from a helium atom can depend on whether a laser pulse's electric field is right- or left-handed -- that is, whether it rotates clockwise or counterclockwise. The researchers have also calculated the distinct range of angles at which the electrons depart under both conditions.
The authors further confirmed that this effect, which they have coined "nonlinear dichroism," appears only when an atom is struck by a sufficiently short, intense pulse featuring an elliptically shaped electric field.
The study, published in the journal Physical Review Letters, specifically determined that pulses capable of producing this effect last no longer than 200 attoseconds. Counting to one second by intervals of 200 attoseconds per second would take roughly 158.5 million years -- longer than the span that has passed since the end of Earth's Jurassic period.
"The goal in laser atomic physics is to control electron motion and also image it," said Anthony Starace, a George Holmes University Professor of physics who co-authored the study. "To do that, one needs probes that are much faster than the time scale on which electrons move."
However, Starace noted that the exceptionally short duration of attosecond laser pulses -- and the resulting quantum-scale interactions -- can obscure the mechanics underlying laboratory outcomes.
"When things happen on such fast time scales, experimentalists don't always know what they've achieved," he said. "They cannot 'see' how electrons make atomic and molecular transitions. So they need means to ascertain, 'How did we do that?' or, 'What did we have there?'"
The team's paper, Starace said, should help laser physicists address this fundamental and prevalent issue.
"This has applications for timing electron processes," Starace said. "On our human time scale, we think in terms of minutes, but these phenomena take place over inconceivably short fractions of a second. The question is: Are they 10 attoseconds? One hundred? A thousand? No one knows. With these results, we can explore theoretically -- and fairly exactly -- the question of how long electron transitions and processes take."
By identifying and measuring nonlinear dichroism, Starace said, the team's study also offers a new signature that quantum physicists can use to classify experimentally produced laser pulses and verify their results.
"If the experimentalists measure this new effect, they will have information as to how long their pulses are, what polarization their pulses have, and what the shape of their electric field is," Starace said. "These are means to characterize their pulses."
According to Starace, the study represents a significant step toward an even larger goal of laser physics: manipulating the most fundamental components of matter in the known universe.
"If experimentalists can finally produce such pulses reliably, this new effect allows great control over the way electrons move," Starace said. "If we hit a target with the short attosecond pulses that have a particular duration and polarization, we can tell the electrons whether to go one way or another. This is humankind's dream of controlling electrons, rather than just watching them."
Jean Marcel Ngoko Djiokap, research assistant professor of physics, laid the path to the team's findings by programming the first code capable of accounting both for the interactions between two laser-influenced electrons and the complexity of electric fields that move in multiple dimensions.
"Normally, theorists assume an electric field oscillates in one direction only, which reduces the scale of the computation," Starace said. "With elliptical polarization, the electric field sweeps around in a plane. This adds another dimension to the problem, which greatly increases the numerical complexity and the difficulty of doing the calculation. Marcel has solved this problem."
Starace likened the team's computational approach to climbing aboard the elliptical "merry-go-round" of the laser pulse's electric field. Performing calculations from this perspective -- rather than the stationary perspective of those watching from outside -- ultimately streamlined the problem, he said.
"If you're on a merry-go-round, people on the sidelines see you spinning around -- but to you, the horse you're sitting on is stationary," Starace said. "What Marcel has done is move the calculation from the laboratory frame (of reference) to this rotating frame, so that all we see is linearly polarized, one-dimensional light. The whole thing becomes simpler."
Starace and Ngoko Djiokap co-authored the study with colleagues from Russia's Voronezh State University; the Laboratory for Laser Energetics at the University of Rochester (N.Y.); and Denmark's Aarhus University.
Writer: Scott Schrage, University Communications
####
For more information, please click here
Contacts:
Anthony Starace
402-472-2795
Copyright © University of Nebraska-Lincoln
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||