Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland

Users of the JPK NanoWizard® AFM & CellHesion module housed in the Queensland node of the Australian National Fabrication Facility (ANFF-Q). Pictured are PhD students, Mr Anton Pluschke and Miss Grace Dolan.
Users of the JPK NanoWizard® AFM & CellHesion module housed in the Queensland node of the Australian National Fabrication Facility (ANFF-Q). Pictured are PhD students, Mr Anton Pluschke and Miss Grace Dolan.

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of AFM and the CellHesion® module to study plant cell wall biology in the School of Chemical Engineering at the University of Queensland.

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland

Berlin, Germany | Posted on November 25th, 2014

The Australian Research Council Centre of Excellence in Plant Cell Walls is a collaborative project involving the Universities of Adelaide, Melbourne and Queensland in partnership with South Australia State Government and seven international institutions. Their aim is to advance fundamental scientific understanding of plant cell wall biology. Cell wall composition determines the quality of most plant-based products used in modern human societies. The Centre's focus is on the nutritional and processing properties of plant-based foods which are heavily influenced by plant cell wall structure and composition. As the largest source of renewable carbon, plant cell walls have a critical future role in providing transport fuels, food security, functional foods (including dietary fibres) to improve human health and as raw materials for industrial processes.

Describing the work, Dr Gleb Yakubov from the Rheology & Biolubrication Laboratory in the School of Chemical Engineering at the University of Queensland says "Only relatively recently, we started to probe how mechanical stresses influence the growth and development of plant cells. These mechanical 'signals' provide an active feedback mechanism for cell biochemical machinery to know what goes on in its cellular neighbourhood as well as in the outside world. In particular we are interested in how mechanical properties change when cells grow and develop. We also seek to understand the role of micro- and nano-scale heterogeneities in the mechanical response of cell walls. Further, we are interested in how non-cellulose components such as hemicelluloses and pectins influence the wall assembly. Apart from fundamental insight, these components are the keys for human nutrition as they constitute the majority of dietary fibre within human diet."

Talking of why he chose to use JPK's AFM and CellHesion® module, Dr Yabukov continued: "CellHesion® is a useful tool when nano technique such as AFM is used to study microscopic objects. Plant cells are comparatively large, as large as 100 µm in our case, but could be even larger. For such experiments, it is of paramount importance to have a large range XYZ piezo-positioning system. Also, we use a PIFOC tool to enable synchronised AFM and CLSM measurements. We are fully utilising the power of combining AFM with other imaging techniques such as CLSM, SEM and TEM to ascertain complex properties of plant walls. The JPK NanoWizard® AFM provides an important functionality to allow the measurement of physical properties such as mechanical forces: adhesion, friction and surface forces."

For more details about JPK's NanoWizard® AFM and CellHesion® module and their applications for the bio & nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
http://www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
http://www.talking-science.com/

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project