Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A novel method for identifying the body’s ‘noisiest’ networks

Image via Shutterstock
Image via Shutterstock

Abstract:
A team of scientists led by Yale University systems biologist and biomedical engineer Andre Levchenko has developed a novel method for mapping the biochemical variability, or "noise," in how human cells respond to chemical signals. The research, published Nov. 17 in Proceedings of the National Academy of Science, could be used to tailor drug delivery to a patient's individual cell responses and may have further implications for advances in semiconductor chip design.

A novel method for identifying the body’s ‘noisiest’ networks

New Haven, CT | Posted on November 19th, 2014

Levchenko's method is founded on the recognition that every cell reacts uniquely to the body's chemical signals, even if the cells are all from the same patient and even the same tissue — some cells may react strongly, while other cells may not react at all. A wide diversity of responses is considered a noisy response.

The new method maps noise across multiple branches of complicated biochemical networks. "Knowing how variable the activity is allows us to better target the spectra of activities in those networks," said Levchenko, the John C. Malone Professor of Biomedical Engineering and inaugural director of the Yale Systems Biology Institute.

"For example, if a specific cell network's spectra of response is less noisy, then a comparatively small drug dosage could target the entire spectra. Our mapping technique enables researchers and clinicians to identify those less noisy networks, which could be unique for each patient," he said.

For this research, Levchenko's team — including Alex Rhee and Raymond Cheong of Johns Hopkins University — looked at a signaling system stimulated by cytokine tumor necrosis factor (TNF), which is commonly produced by cells responding to infections. When the body's sentinel cells detect foreign materials, they broadcast the TNF molecule to activate the first line of immune response.

Using a combination of experimental observations and mathematical algorithms, the team measured the effect of TNF input for a small number of target molecules, then inferred how the signal triggers by TNF propagated through the network. Because the TNF signal originated from the same point, the team could efficiently reconstruct how different branches of the cell communication networks reacted to the signal without measuring the dozens of molecules affected.

"Previous experiments in this field, including our own, would focus on these network responses by looking at the average cell behavior over perhaps millions of cells at a time," said Levchenko. "The new method is unique in that it requires relatively few targets — we observed just three target transcription factors — to reconstruct not only how responsive but also how noisy various branches of the signaling network are. Using this effective methodology, we can now embark on extensive mapping of the sources of noise across signaling networks."

In turn, identifying which networks were noisier enabled Levchenko's team to experimentally confirm that noise tends to increase as the communication chain gets longer, something that could be applicable to research of not only biological networks but even electrical networks.

"Despite the noise in cellular networks," he said, "biology still allows cells and organisms to perform well. Similarly, as today's electronic components become smaller, chip designers more often need to study and circumvent signaling noise. For this reason, the challenges of building effective computational devices and designing effective medical therapeutics are more similar than meets the eye."

Reflecting this interdisciplinary nature, the research was supported by both the National Institutes of Health and the Semiconductor Research Corporation.

####

For more information, please click here

Contacts:

Jim Shelton

203-361-8332

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project