Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases

Illustration: Christine Daniloff/MIT
Illustration: Christine Daniloff/MIT

Abstract:
MIT chemists have developed new nanoparticles that can simultaneously perform magnetic resonance imaging (MRI) and fluorescent imaging in living animals. Such particles could help scientists to track specific molecules produced in the body, monitor a tumor's environment, or determine whether drugs have successfully reached their targets.

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases

Cambridge, MA | Posted on November 18th, 2014



In a paper appearing in the Nov. 18 issue of Nature Communications, the researchers demonstrate the use of the particles, which carry distinct sensors for fluorescence and MRI, to track vitamin C in mice. Wherever there is a high concentration of vitamin C, the particles show a strong fluorescent signal but little MRI contrast. If there is not much vitamin C, a stronger MRI signal is visible but fluorescence is very weak.

Future versions of the particles could be designed to detect reactive oxygen species that often correlate with disease, says Jeremiah Johnson, an assistant professor of chemistry at MIT and senior author of the study. They could also be tailored to detect more than one molecule at a time.

"You may be able to learn more about how diseases progress if you have imaging probes that can sense specific biomolecules," Johnson says.

Dual action

Johnson and his colleagues designed the particles so they can be assembled from building blocks made of polymer chains carrying either an organic MRI contrast agent called a nitroxide or a fluorescent molecule called Cy5.5.

When mixed together in a desired ratio, these building blocks join to form a specific nanosized structure the authors call a branched bottlebrush polymer. For this study, they created particles in which 99 percent of the chains carry nitroxides, and 1 percent carry Cy5.5.

Nitroxides are reactive molecules that contain a nitrogen atom bound to an oxygen atom with an unpaired electron. Nitroxides suppress Cy5.5's fluorescence, but when the nitroxides encounter a molecule such as vitamin C from which they can grab electrons, they become inactive and Cy5.5 fluoresces.

Nitroxides typically have a very short half-life in living systems, but University of Nebraska chemistry professor Andrzej Rajca, who is also an author of the new Nature Communications paper, recently discovered that their half-life can be extended by attaching two bulky structures to them. Furthermore, the authors of the Nature Communications paper show that incorporation of Rajca's nitroxide in Johnson's branched bottlebrush polymer architectures leads to even greater improvements in the nitroxide lifetime. With these modifications, nitroxides can circulate for several hours in a mouse's bloodstream — long enough to obtain useful MRI images.

The researchers found that their imaging particles accumulated in the liver, as nanoparticles usually do. The mouse liver produces vitamin C, so once the particles reached the liver, they grabbed electrons from vitamin C, turning off the MRI signal and boosting fluorescence. They also found no MRI signal but a small amount of fluorescence in the brain, which is a destination for much of the vitamin C produced in the liver. In contrast, in the blood and kidneys, where the concentration of vitamin C is low, the MRI contrast was maximal.

Mixing and matching

The researchers are now working to enhance the signal differences that they get when the sensor encounters a target molecule such as vitamin C. They have also created nanoparticles carrying the fluorescent agent plus up to three different drugs. This allows them to track whether the nanoparticles are delivered to their targeted locations.

"That's the advantage of our platform — we can mix and match and add almost anything we want," Johnson says.

These particles could also be used to evaluate the level of oxygen radicals in a patient's tumor, which can reveal valuable information about how aggressive the tumor is.

"We think we may be able to reveal information about the tumor environment with these kinds of probes, if we can get them there," Johnson says. "Someday you might be able to inject this in a patient and obtain real-time biochemical information about disease sites and also healthy tissues, which is not always straightforward."

Steven Bottle, a professor of nanotechnology and molecular science at Queensland University of Technology, says the most impressive element of the study is the combination of two powerful imaging techniques into one nanomaterial.

"I believe this should deliver a very powerful, metabolically linked, multi-combination imaging modality which should provide a highly useful diagnostic tool with real potential to follow disease progression in vivo," says Bottle, who was not involved in the study.

The research was funded by the National Institutes of Health, the Department of Defense, the National Science Foundation, and the Koch Institute for Integrative Cancer Research.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Cancer

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project