Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mathematical Model Predicts Vibrating Behavior of Conical Shell's Nanocomposite Objects

Abstract:
Iranian researchers from Amirkabir University of Technology presented a mathematical model to predict vibrating behavior of conical shell's nanocomposite objects.

Mathematical Model Predicts Vibrating Behavior of Conical Shell's Nanocomposite Objects

Tehran, Iran | Posted on November 15th, 2014

Results of the research have applications in aerospace, oil and gas industries.

Composite pieces of conical shell are used in novel industries such as aerospace and mechanics as structural components. In some applications, the pieces are imposed to rotation at constant angular velocity. It is not impossible to observe changes in their vibrating properties due to the initial stresses caused by eccentricity and Coriolis forces. Therefore, it is essential to precisely evaluate vibrating properties of the pieces at operational conditions during their designing and production.

This research studies the vibration of compounds strengthened with carbon nanotubes in circular conical shells. The researchers studied different arrangements of nanotubes and the effects of Coriolis forces on the frequency of circular shells. In fact, efforts have been made to present a mathematical method by studying Coriolis effects in structures with very high rotating speed.

Rotating systems and their vibrations can be predicted by using the modeling, and their responses can be modified. This fact results in an increase in efficiency, low density, high strength and long lifetime of the structures.

Results of the research have been published in Composite Structures, vol. 117, issue 1, 2014, pp. 187-200.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project