Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Noise in a microwave amplifier is limited by quantum particles of heat

Electron microscope image of an indium phosphide high electron mobility transistor (InP HEMT). The region affected by the self-heating process is highlighted in the cross section of the InP HEMT.
Electron microscope image of an indium phosphide high electron mobility transistor (InP HEMT). The region affected by the self-heating process is highlighted in the cross section of the InP HEMT.

Abstract:
As part of an international collaboration, scientists at Chalmers University of Technology have demonstrated how noise in a microwave amplifier is limited by self-heating at very low temperatures. The results will be published in the prestigious journal Nature Materials. The findings can be of importance for future discoveries in many areas of science such as quantum computers and radio astronomy.

Noise in a microwave amplifier is limited by quantum particles of heat

Gothenburg, Sweden | Posted on November 10th, 2014

Many significant discoveries in physics and astronomy are dependent upon registering a barely detectable electrical signal in the microwave regime. A famous example of this was the discovery of cosmic background radiation that helped confirm the Big Bang theory. Another example is the detection of data from scientific instruments in space missions on their way to distant planets, asteroids or comets.

Faint microwave signals are detected by transistor-based low-noise amplifiers. Researchers at Chalmers University of Technology have now optimised indium phosphide transistors using a special process for this purpose. A spin-off company from Chalmers, Low Noise Factory, designs and packages amplifier circuits.

"Cooling the amplifier modules to -260 degrees Celsius enables them to operate with the highest signal-to-noise ratio possible today," says Jan Grahn, Professor of microwave technology at Chalmers. "These advanced cryogenic amplifiers are of tremendous significance for signal detection in many areas of science, ranging from quantum computers to radio astronomy."

Using a combination of measurements and simulations, the researchers investigated what happens when a microwave transistor is cooled to one tenth of a degree above absolute zero (-273 degrees Celsius). It was thought that noise in the transistor was limited by so-called hot electrons at such extreme temperatures. However, the new study shows that the noise is actually limited by self-heating in the transistor.

Self-heating is associated with phonon radiation in the transistor at very low temperatures. Phonons are quantum particles that describe the thermal conductivity of a material. The results of the study are based on experimental noise measurements and simulations of phonons and electrons in the semiconductor transistor at low temperatures.

"The study is important for the fundamental understanding of how a transistor operates close to absolute zero temperature, and also how we should design even more sensitive low-noise amplifiers for future detectors in physics and astronomy," explains Jan Grahn.

The research has been performed as part of an international exchange between Chalmers University of Technology in Sweden and the California Institute of Technology. Co-authors are the University of Salamanca and the Swedish company Low Noise Factory. The study was conducted at the Gigahertz Centre, a joint venture between Chalmers, research institutes, company partners and the Swedish Governmental Agency for Innovation Systems (Vinnova).

####

About Chalmers University of Technology
Chalmers University of Technology performs research and education in technology, science and architecture, with a sustainable future as overall vision. Chalmers is well-known for providing an effective environment for innovation and has eight Areas of Advance – Built Environment, Energy, Information and Communication Technology, Life Science, Materials Science, Nanoscience and Nanotechnology, Production, and Transportation. Situated in Gothenburg, Sweden, Chalmers has 13,000 students and 2,500 employees.

For more information, please click here

Contacts:
Johanna Wilde


Jan Grahn
Department of Microtechnology and Nanoscience
Chalmers University of Technology
Sweden
+46 73034 62 99

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Aerospace/Space

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project