Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nanofiber-based technology could help prevent HIV/AIDS transmission: Promising research to be featured at 2014 AAPS Annual Meeting and Exposition

Abstract:
Scientists have developed a novel topical microbicide loaded with hyaluronic acid (HA) nanofibers that could potentially prevent transmission of the human immunodeficiency virus (HIV) through the vaginal mucosa. This research is being presented at the 2014 American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition, the world's largest pharmaceutical sciences meeting, in San Diego, Nov. 2-6.

Novel nanofiber-based technology could help prevent HIV/AIDS transmission: Promising research to be featured at 2014 AAPS Annual Meeting and Exposition

San Diego, CA | Posted on November 5th, 2014

HIV is an infectious virus that attacks T lymphocytes, a type of white blood cell that prevents infections and disease. Over time, HIV dramatically depletes the body's T cell population, leaving the body defenseless against opportunistic pathogens. HIV is transmitted through direct contact with blood, semen, pre-seminal fluid, vaginal fluids, rectal fluids, or breast milk from an infected person. According to AIDS.gov, the Center for Disease Control and Prevention estimates that more than 1 million persons aged 13 years and older are living with HIV infection, including 180,900 who are unaware that they have the virus. To date, there is no functional cure for HIV infection/AIDS. Currently available anti-HIV drug delivery methods are formulated as gels and suppositories, but can lack appropriate vaginal retention, are prone to medicine leakage, and may cause uncomfortable wetness.

To address these issues, Bi-Botti Youan, Ph.D and his colleagues from University of Missouri-Kansas City School of Pharmacy developed an anti-HIV drug loaded onto a mucoadhesive hyaluronic acid (HA) nanofiber delivery system. This delivery system is intended to stop HIV transmission through the vaginal mucosa, providing a triggered release upon exposure to semen fluid during sexual intercourse. The researchers used an electrospinning method to prepare the nanofibers loaded with tenofovir, a topical anti-HIV compound. Both semen enzyme-dependent nanofiber degradation and drug release were then measured using chemical and analytical assays. The cytotoxic effects of the nanofibers on human vaginal cells and on the Lactobacilli bacteria (L. crispatus) present in vaginal flora were also assessed.

"The success of vaginal drug delivery systems depends on the length of time that the drug-containing formulation remains at the site of administration (ex. vagina, rectum). The mucoadhesive nanofibers developed in this study could be beneficial by causing much less discomfort and reducing the dosing frequency simultaneously due to their prolonged retention at the target site," said Youan.

The nanofiber-based formulation offers various potential advantages in vaginal drug delivery, including the ability to adapt delivery systems for different medical needs, with no leakage or messiness after their application. Furthermore, this technology could be beneficial in protecting drug molecules against enzymatic and other degradation that can occur in the body. Since human semen is the carrier of HIV virus transmission during male to female intercourse, a semen enzyme-triggered nanofiber delivery system as used in this study has the potential to inactivate or kill the HIV virus prior to exposure and penetration of the vaginal mucosa.

The next stage of Youan's research is to examine the safety and efficacy of the hyaluronic acid-based nanofiber templates. Further in vivo studies will be carried out using animal models to characterize the viral transmission, inhibition, potential biodistribution, pharmacokinetics, vaginal retention time, safety and immunological responses to the nanofibers.

###

This work was supported by grant number R01AI087304 from the National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA).

The 2014 AAPS Annual Meeting and Exposition aims to improve global health through advances in pharmaceutical sciences, and there will be over 470 exhibiting companies and an estimated 7,000 attendees. The meeting features nearly 245 programming sessions, including more than 65 symposia and roundtables and more than 2190 posters. Download the AAPS mobile application for additional information.

####

About American Association of Pharmaceutical Scientists
The American Association of Pharmaceutical Scientists is a professional, scientific society of approximately 10,000 members employed in academia, industry, government and other research institutes worldwide. Founded in 1986, AAPS provides a dynamic international forum for the exchange of knowledge among scientists to serve the public and enhance their contributions to health. AAPS offers timely scientific programs, on-going education, information resources, opportunities for networking, and professional development. For more information, please visit www.aaps.org. Follow us on Twitter @AAPSComms; official Twitter hashtag for the meeting is: #AAPS2014.

For more information, please click here

Contacts:
Amanda Johnson

202-587-2520

Copyright © American Association of Pharmaceutical Scientists

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project