Home > Press > Bio-inspired 'nano-cocoons' offer targeted drug delivery against cancer cells
![]() |
This image illustrates how the nano-cocoon system works. Image courtesy of Zhen Gu. |
Abstract:
"Cocoon-Like Self-Degradable DNA-Nanoclew for Anticancer Drug Delivery"
Authors: Wujin Sun, Yue Lu, Margaret Reiff, and Zhen Gu, North Carolina State University and University of North Carolina at Chapel Hill; Ran Mo and Tianyue Jiang, North Carolina State University, University of North Carolina at Chapel Hill, and China Pharmaceutical University
Published: Oct. 13, 2014, Journal of the American Chemical Society
DOI: 10.1021/ja5088024
Abstract: A bio-inspired cocoon-like anticancer drug delivery system consisting of a deoxyribonuclease (DNAse)-degradable DNA nanoclew (NCl) embedded with acid-responsive DNAse I nanocapsule (NCa) was developed for targeted cancer treatment. The NCl was assembled from a long chain single stranded DNA synthesized by the rolling circle amplification (RCA). Multiple GC-pair sequences were integrated in the NCl for enhanced loading capacity of anticancer doxorubicin (DOX). Meanwhile, negatively charged DNAse I was encapsulated in a positively charged acid-degradable polymeric nanogel to facilitate decoration of DNAse I into NCl by electrostatic interaction. At an acidic environment, the activity of DNAse I was activated due to the acid-triggered shedding of the polymeric shell of NCa, resulting in the cocoon-like self-degradation of NCl and promoting the release of DOX for enhanced therapeutic efficacy.
Biomedical engineering researchers have developed a drug delivery system consisting of nanoscale "cocoons" made of DNA that target cancer cells and trick the cells into absorbing the cocoon before unleashing anticancer drugs. The work was done by researchers at North Carolina State University and the University of North Carolina at Chapel Hill.
"This drug delivery system is DNA-based, which means it is biocompatible and less toxic to patients than systems that use synthetic materials," says Dr. Zhen Gu, senior author of a paper on the work and an assistant professor in the joint biomedical engineering program at NC State and UNC Chapel Hill.
"This technique also specifically targets cancer cells, can carry a large drug load and releases the drugs very quickly once inside the cancer cell," Gu says.
"In addition, because we used self-assembling DNA techniques, it is relatively easy to manufacture," says Wujin Sun, lead author of the paper and a Ph.D. student in Gu's lab.
Each nano-cocoon is made of a single strand of DNA that self-assembles into what looks like a cocoon, or ball of yarn, that measures 150 nanometers across.
The core of the nano-cocoon contains the anticancer drug doxorubicin (DOX) and a protein called DNase. The DNase, an enzyme that would normally cut up the DNA cocoon, is coated in a thin polymer that traps the DNase like a sword in a sheath.
The surface of the nano-cocoon is studded with folic acid ligands. When the nano-cocoon encounters a cancer cell, the ligands bind the nano-cocoon to receptors on the surface of the cell - causing the cell to suck in the nano-cocoon.
Once inside the cancer cell, the cell's acidic environment destroys the polymer sheath containing the DNase. Freed from its sheath, the DNase rapidly slices through the DNA cocoon, spilling DOX into the cancer cell and killing it.
"We're preparing to launch preclinical testing now," Gu says. "We're very excited about this system and think it holds promise for delivering a variety of drugs targeting cancer and other diseases."
This research was supported by the North Carolina Translational and Clinical Sciences Institute under grant number 1UL1TR001111 and with funding from NC State and UNC Chapel Hill.
####
For more information, please click here
Contacts:
Matt Shipman
919-515-6386
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |