Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ad-REIC vaccine: A magic bullet for cancer treatment

A "Magic Bullet" for Cancer Gene Therapy
A "Magic Bullet" for Cancer Gene Therapy

Abstract:
Hiromi Kumon
Director, Innovation Center Okayama for Nanobio-targeted Therapy (ICONT) Okayama University Graduate School (Department of Urology)

Direct targeting and induction of immunological attacks on cancer cells are two widely used approaches for the treatment of cancer. But Professor Hiromi Kumon and colleagues at Okayama University have developed a third and potentially more effective approach based on Reduced Expression in Immortalized Cells (REIC)—a tumor suppressor gene discovered at Okayama University. "In 2005 researchers at the Okayama University Medical School forced its expression using adenoviral vector (Ad-REIC) and discovered it caused selective death (apoptosis) of prostate cancer cells without damaging normal cells," explains Kumon. "Our approach is a combination of targeting and immunology for the treatment of cancer. Some people have referred to this as a ‘magic bullet'. We are working with international partners to develop an Ad-REIC/DKK3 vaccine to treat various intractable solid tumors."

Ad-REIC vaccine: A magic bullet for cancer treatment

Okinawa, Japan | Posted on September 30th, 2014

The important aspect of cancer treatment using Ad-REIC is that it is highly selective, and normal cells are not affected, where the action of Ad-REIC occurs almost 100% in prostate cancer, ~90% in malignant mesothelioma, and also high rates in other cases including kidney cancer. "Our experiments show REIC will be applicable to a wide range of cancer treatment, "says Kumon. "The Ad-REIC is a cancer therapeutic gene that acts via the activation of JNK-c-jun pathway due to endoplasmic reticulum (ER) stress." [1-3]

Kumon and colleagues are currently collaborating with international teams of researchers and clinicians on Phase I/II clinical studies for prostate cancer and malignant mesothelioma using Ad-REIC. These ‘proof of concept' studies are being carried out in the USA and Japan to lay the foundations for innovative medicine for cancer, with the ultimate of aim of collaborate with pharmaceutical companies to produce cancer vaccines.

In Japan, Momotaro-Gene Inc—an Okayama University venture company— and Okayama University own the intellectual property for this treatment.
Furthermore, in July 2014 Professor Kumon was selected by the Japan Science and Technology Agency (JST) as a recipient of the competitive and prestigious "NexTEP" program. This funding will be used to work with industrial partners to develop Ad-REIC cancer vaccine.

Reference and further information
[1] F. Abarzua et al, "Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase", Cancer Res 65:9617-9622, (2005).

[2] Yuji Kashiwakura etal, "Down-regulation of Inhibition of Differentiation-1 via Activation of Activating Transcription Factor 3 and Smad Regulates REIC/Dickkopf-3-Induced Apoptosis", Cancer Res 68:8333-8341, (2008).

[3] M. Sakaguchi etal, "Overexpression of REIC/Dkk-3 in normal fibroblasts suppresses tumor growth via induction of interleukin-7", J Biol Chem 284, 14236-14244, (2009).

[4] 2008 Momotaro-Gene Inc. website: www.mt-gene.com/index_e.html

[5] Japan Science and Technology Agency: www.jst.go.jp/EN/index.html

####

About Okinawa University
Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

For more information, please click here

Contacts:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama-shi 700-8530, Japan
Planning and Public Information Division

Copyright © Okinawa University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project