Home > Press > How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems
Discrete elastic rods, used for hair simulation here, are also being used to predict the coiling of undersea communication cables. Image credit: Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun |
Abstract:
When one sends an email from Boston to Beijing, it travels through submarine optical cables that someone had to install at some point. The positioning of these cables can generate intriguing coiling patterns that can also cause problems if, for instance, they are tangled or kinked. The deployment of a rodlike structure onto a moving substrate is commonly found in a variety of engineering applications, from the fabrication of nanotube serpentines to the laying of submarine cables and pipelines, and engineers for years have been interested in predicting the mechanics of filamentary structures and the coiling process.
A team led by Eitan Grinspun, associate professor of computer science at Columbia Engineering, and Pedro Reis, associate professor of mechanical engineering and civil and environmental engineering at MIT, has been collaborating on a project that, in exploring these issues, bridges engineering mechanics (Reis's group) and computer graphics (Grinspun's group). The researchers combined precision model experiments with computer simulations and examined the mechanics of coiling, discovering in particular that the natural curvature of the rod dramatically affects the coiling process. Their study is published in the September 29 Early Online edition of Proceedings of the National Academy of Sciences (PNAS).
"This was a fun, fruitful collaboration," says Grinspun. "We did something totally new and different: we took a computer algorithm that we had designed for Hollywood, and, by teaming up with Reis's group, discovered that this same algorithm served as a predictive tool for engineering mechanics of thin filaments, rods, and pipes. It's exciting to think that this computer model can serve both creative and engineering enterprises."
Grinspun's simulation technology, Discrete Elastic Rods, was originally developed to animate hair and fur in film and graphics applications, licensed and used in Photoshop for realistic paintbrushes, and by Weta Digital for use in films such as The Hobbit and Planet of the Apes series. Reis, who is an experimental mechanician at MIT, was studying how buckling of thin elastic structures can be turned on its head: buckling is normally feared by engineers as a potential failure of a design, but what if it could be used as a functional component of a design? The two researchers decided to investigate how cables are deployed, both at the nanoscale, in stretchable electronics, and the macro scale, such as the deployment of internet communication cables on the ocean floor.
"This has been a wonderful example of two seemingly unrelated fields coming together to address a practical problem to introducing powerful and novel computational tools that were not previously available in our engineering community," Reis notes.
The collaboration between Grinspun and Reis began when Reis invited Grinspun to visit his lab at MIT. "We wondered if our seemingly distant worlds could be bridged by a common vision," says Grinspun. "We both wanted to understand how physical objects move by looking at how their geometry, or shape, affects their motion. Cables, being long and slender, were ideal candidates for study. But could the technology we built at Columbia Engineering for visually striking film and special effects be sufficiently accurate to agree with Reis's hard and precise experimental data?"
With support from the National Science Foundation, Reis and Grinspun recruited doctoral students Khalid Jawed (MIT) and Fang Da (Columbia Engineering) to study cable deployment in detail. In their PNAS article, the researchers describe how seemingly benign decisions, such as the diameter of a spool, or the speed at which a cable is deployed, can dramatically affect the way that the cable lies on the ground. They created a map of the different patterns that can arise, from a wiggling meandering mode to steady coiling and on to alternating loops, as the spool diameter or deployment speed are varied. The researchers also identified factors that have relatively little impact on the deployment, among them the height from which a cable is dropped.
"These findings have practical impacts on our everyday lives," Reis adds. "Take, for instance, an email that travels along a transoceanic communication cable. By better understanding the variables that impact the deployment of such cables, we can better balance considerations such as expense (the length of the cable deployed, the amount of time to deploy the cable), signal quality (tangled cables can be more prone to interference), and the resilience of the connection (taut cables are more prone to damage due to external factors, such as seismic activity."
"Translating computer tools from computers and validating them against precision model experiments has provided a novel tool for engineering mechanics to tackle the design and analysis of other rodlike structures, which are common in nature and technology," Reis continues.
"As we move to the next stage, we would like to pursue engineering problems that combine the mechanics of slender filaments with additional ingredients, such as drag, contact, and friction," adds Grinspun. "We are looking, for example, at locomotion of bacteria, tying of shoelaces, and hair blowing in the wind."
###
This work is funded by a National Science Foundation MoM-IDR Collaborative grant under CMMI (1129894).
####
For more information, please click here
Contacts:
Holly Evarts
347-453-7408
Copyright © Columbia University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Software
Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022
Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||