Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems

 Discrete elastic rods, used for hair simulation here, are also being used to predict the coiling of undersea communication cables.
Image credit: Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun
Discrete elastic rods, used for hair simulation here, are also being used to predict the coiling of undersea communication cables.

Image credit: Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun

Abstract:
When one sends an email from Boston to Beijing, it travels through submarine optical cables that someone had to install at some point. The positioning of these cables can generate intriguing coiling patterns that can also cause problems if, for instance, they are tangled or kinked. The deployment of a rodlike structure onto a moving substrate is commonly found in a variety of engineering applications, from the fabrication of nanotube serpentines to the laying of submarine cables and pipelines, and engineers for years have been interested in predicting the mechanics of filamentary structures and the coiling process.

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems

New York, NY | Posted on September 29th, 2014

A team led by Eitan Grinspun, associate professor of computer science at Columbia Engineering, and Pedro Reis, associate professor of mechanical engineering and civil and environmental engineering at MIT, has been collaborating on a project that, in exploring these issues, bridges engineering mechanics (Reis's group) and computer graphics (Grinspun's group). The researchers combined precision model experiments with computer simulations and examined the mechanics of coiling, discovering in particular that the natural curvature of the rod dramatically affects the coiling process. Their study is published in the September 29 Early Online edition of Proceedings of the National Academy of Sciences (PNAS).

"This was a fun, fruitful collaboration," says Grinspun. "We did something totally new and different: we took a computer algorithm that we had designed for Hollywood, and, by teaming up with Reis's group, discovered that this same algorithm served as a predictive tool for engineering mechanics of thin filaments, rods, and pipes. It's exciting to think that this computer model can serve both creative and engineering enterprises."

Grinspun's simulation technology, Discrete Elastic Rods, was originally developed to animate hair and fur in film and graphics applications, licensed and used in Photoshop for realistic paintbrushes, and by Weta Digital for use in films such as The Hobbit and Planet of the Apes series. Reis, who is an experimental mechanician at MIT, was studying how buckling of thin elastic structures can be turned on its head: buckling is normally feared by engineers as a potential failure of a design, but what if it could be used as a functional component of a design? The two researchers decided to investigate how cables are deployed, both at the nanoscale, in stretchable electronics, and the macro scale, such as the deployment of internet communication cables on the ocean floor.

"This has been a wonderful example of two seemingly unrelated fields coming together to address a practical problem to introducing powerful and novel computational tools that were not previously available in our engineering community," Reis notes.

The collaboration between Grinspun and Reis began when Reis invited Grinspun to visit his lab at MIT. "We wondered if our seemingly distant worlds could be bridged by a common vision," says Grinspun. "We both wanted to understand how physical objects move by looking at how their geometry, or shape, affects their motion. Cables, being long and slender, were ideal candidates for study. But could the technology we built at Columbia Engineering for visually striking film and special effects be sufficiently accurate to agree with Reis's hard and precise experimental data?"

With support from the National Science Foundation, Reis and Grinspun recruited doctoral students Khalid Jawed (MIT) and Fang Da (Columbia Engineering) to study cable deployment in detail. In their PNAS article, the researchers describe how seemingly benign decisions, such as the diameter of a spool, or the speed at which a cable is deployed, can dramatically affect the way that the cable lies on the ground. They created a map of the different patterns that can arise, from a wiggling meandering mode to steady coiling and on to alternating loops, as the spool diameter or deployment speed are varied. The researchers also identified factors that have relatively little impact on the deployment, among them the height from which a cable is dropped.

"These findings have practical impacts on our everyday lives," Reis adds. "Take, for instance, an email that travels along a transoceanic communication cable. By better understanding the variables that impact the deployment of such cables, we can better balance considerations such as expense (the length of the cable deployed, the amount of time to deploy the cable), signal quality (tangled cables can be more prone to interference), and the resilience of the connection (taut cables are more prone to damage due to external factors, such as seismic activity."

"Translating computer tools from computers and validating them against precision model experiments has provided a novel tool for engineering mechanics to tackle the design and analysis of other rodlike structures, which are common in nature and technology," Reis continues.

"As we move to the next stage, we would like to pursue engineering problems that combine the mechanics of slender filaments with additional ingredients, such as drag, contact, and friction," adds Grinspun. "We are looking, for example, at locomotion of bacteria, tying of shoelaces, and hair blowing in the wind."
###

This work is funded by a National Science Foundation MoM-IDR Collaborative grant under CMMI (1129894).

####

For more information, please click here

Contacts:
Holly Evarts

347-453-7408

Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project