Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems

 Discrete elastic rods, used for hair simulation here, are also being used to predict the coiling of undersea communication cables.
Image credit: Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun
Discrete elastic rods, used for hair simulation here, are also being used to predict the coiling of undersea communication cables.

Image credit: Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun

Abstract:
When one sends an email from Boston to Beijing, it travels through submarine optical cables that someone had to install at some point. The positioning of these cables can generate intriguing coiling patterns that can also cause problems if, for instance, they are tangled or kinked. The deployment of a rodlike structure onto a moving substrate is commonly found in a variety of engineering applications, from the fabrication of nanotube serpentines to the laying of submarine cables and pipelines, and engineers for years have been interested in predicting the mechanics of filamentary structures and the coiling process.

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems

New York, NY | Posted on September 29th, 2014

A team led by Eitan Grinspun, associate professor of computer science at Columbia Engineering, and Pedro Reis, associate professor of mechanical engineering and civil and environmental engineering at MIT, has been collaborating on a project that, in exploring these issues, bridges engineering mechanics (Reis's group) and computer graphics (Grinspun's group). The researchers combined precision model experiments with computer simulations and examined the mechanics of coiling, discovering in particular that the natural curvature of the rod dramatically affects the coiling process. Their study is published in the September 29 Early Online edition of Proceedings of the National Academy of Sciences (PNAS).

"This was a fun, fruitful collaboration," says Grinspun. "We did something totally new and different: we took a computer algorithm that we had designed for Hollywood, and, by teaming up with Reis's group, discovered that this same algorithm served as a predictive tool for engineering mechanics of thin filaments, rods, and pipes. It's exciting to think that this computer model can serve both creative and engineering enterprises."

Grinspun's simulation technology, Discrete Elastic Rods, was originally developed to animate hair and fur in film and graphics applications, licensed and used in Photoshop for realistic paintbrushes, and by Weta Digital for use in films such as The Hobbit and Planet of the Apes series. Reis, who is an experimental mechanician at MIT, was studying how buckling of thin elastic structures can be turned on its head: buckling is normally feared by engineers as a potential failure of a design, but what if it could be used as a functional component of a design? The two researchers decided to investigate how cables are deployed, both at the nanoscale, in stretchable electronics, and the macro scale, such as the deployment of internet communication cables on the ocean floor.

"This has been a wonderful example of two seemingly unrelated fields coming together to address a practical problem to introducing powerful and novel computational tools that were not previously available in our engineering community," Reis notes.

The collaboration between Grinspun and Reis began when Reis invited Grinspun to visit his lab at MIT. "We wondered if our seemingly distant worlds could be bridged by a common vision," says Grinspun. "We both wanted to understand how physical objects move by looking at how their geometry, or shape, affects their motion. Cables, being long and slender, were ideal candidates for study. But could the technology we built at Columbia Engineering for visually striking film and special effects be sufficiently accurate to agree with Reis's hard and precise experimental data?"

With support from the National Science Foundation, Reis and Grinspun recruited doctoral students Khalid Jawed (MIT) and Fang Da (Columbia Engineering) to study cable deployment in detail. In their PNAS article, the researchers describe how seemingly benign decisions, such as the diameter of a spool, or the speed at which a cable is deployed, can dramatically affect the way that the cable lies on the ground. They created a map of the different patterns that can arise, from a wiggling meandering mode to steady coiling and on to alternating loops, as the spool diameter or deployment speed are varied. The researchers also identified factors that have relatively little impact on the deployment, among them the height from which a cable is dropped.

"These findings have practical impacts on our everyday lives," Reis adds. "Take, for instance, an email that travels along a transoceanic communication cable. By better understanding the variables that impact the deployment of such cables, we can better balance considerations such as expense (the length of the cable deployed, the amount of time to deploy the cable), signal quality (tangled cables can be more prone to interference), and the resilience of the connection (taut cables are more prone to damage due to external factors, such as seismic activity."

"Translating computer tools from computers and validating them against precision model experiments has provided a novel tool for engineering mechanics to tackle the design and analysis of other rodlike structures, which are common in nature and technology," Reis continues.

"As we move to the next stage, we would like to pursue engineering problems that combine the mechanics of slender filaments with additional ingredients, such as drag, contact, and friction," adds Grinspun. "We are looking, for example, at locomotion of bacteria, tying of shoelaces, and hair blowing in the wind."
###

This work is funded by a National Science Foundation MoM-IDR Collaborative grant under CMMI (1129894).

####

For more information, please click here

Contacts:
Holly Evarts

347-453-7408

Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project