Home > Press > Solar cell compound probed under pressure
![]() |
This is a microphotograph of "wurzite" GaAs nanowire in a diamond anvil cell high pressure cavity kept at 99,000 times normal atmospheric pressure (10 gigapascals); a blue spot is from the 488 nm laser spot (about 4 µm in diameter).
Credit: Wei Zhou |
Abstract:
Gallium arsenide, GaAs, a semiconductor composed of gallium and arsenic is well known to have physical properties that promise practical applications. In the form of nanowires and nanoparticles, it has particular potential for use in the manufacture of solar cells and optoelectronics in many of the same applications that silicon is commonly used.
But the natural semiconducting ability of GaAs requires some tuning in order to make it more desirable for use in manufacturing these types of products. New work from a team led by Carnegie's Alexander Goncharov explores a novel approach to such tuning. Their work is published in Scientific Reports. The research team includes Wei Zhou, Xiao-Jia Chen, Xin-Hua Li and Yu-Qi Wang of the Chinese Academy of Sciences and Jian-Bo Zhang of South China University of Technology.
Metallic substances conduct electrical current easily, whereas insulating (non-metallic) materials conduct no current at all. Semiconducting materials exhibit mid-range electrical conductivity. When semiconducting materials are subjected to an input of a specific energy, bound electrons can be moved to higher-energy, conducting states. The specific energy required to make this jump to the conducting state is defined as the "band gap." Fine-tuning of this band gap has the potential to improve gallium arsenide's commercial potential.
There are different methods available to engineer slight tweaks to the "band gap." Goncharov's team focused on the novel application of very high pressure, which can cause a compound to undergo electronic changes that can alter the electron-carrier properties of materials. It had already been demonstrated on nanowires made from one crystalline form of gallium arsenide--the cubic so-called "zincblende" structure--that the "band gap" widens under pressure.
The present research focused instead on nanowires of a less-common crystalline form--the hexagonal so-called "wurtzite" structure. The team subjected "wurtzite" gallium arsenide to up to about 227,000 times normal atmospheric pressure (23 gigapascals) in diamond anvil cells. They discovered the "band gap" that the electrons need to leap across to also widened, although not as much as in the case of the "zincblende" crystal nanowires.
Significantly, they discovered that around 207,000 times normal atmospheric pressure (21 gigapascals), the "wurtzite" gallium arsenide nanowires underwent a structural change that induced a new phase, the so-called "orthorhombic" one, which may possibly have metallic electronic properties.
"The similarity in behavior when subjected to high pressure, but resulting in significant differences in the size of the 'band gap', between the two crystalline structures of gallium arsenide suggests that both types of GaAs structures could theoretically be incorporated into a single device, or even a single nanowire, and realize much more complex and useful electronic functions through interactions across the phases," Goncharov said. "We believe these findings will stimulate further research into gallium arsenide for both basic scientific and practical purposes."
###
This work was supported by NSFC, the U.S. ARO, DARPA. The GSECARS facility is supported by the NSF and DOE.
####
About Carnegie Institution
The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
For more information, please click here
Contacts:
Alexander Goncharov
agoncharov@carnegiescience.edu
202-478-8947
Copyright © Carnegie Institution
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |