Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter

Abstract:
The U.S. Department of Energy (DOE) has approved the start of routine operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory, beginning a period of significant transition in project activities from construction and commissioning to operations. Passing this milestone comes after many years of diligent planning, design, and construction by staff within the Lab's Photon Sciences Directorate along with staff from many other Brookhaven Lab organizations, and will lead to an exciting new chapter of synchrotron science.

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter

Upton, NY | Posted on September 23rd, 2014

NSLS-II, a third-generation synchrotron light source, will be the newest and most advanced synchrotron facility in the world when it comes online later this year. As a DOE Office of Science User Facility, it will offer researchers from academia, industry, and national laboratories new ways to study material properties and functions with nanoscale resolution and exquisite sensitivity by providing state-of-the-art capabilities for x-ray imaging and high-resolution energy analysis.

"I look forward to the exciting science and benefits that NSLS-II will deliver to the U.S. Department of Energy and the nation," said Steve Dierker, Associate Laboratory Director for Photon Sciences at Brookhaven Lab.

On September 22, after an Accelerator Readiness Review (ARR) team comprised of recognized experts in accelerator safety and operations from peer institutions completed an extensive review, DOE approved Brookhaven Lab's request to begin routine operations, an important milestone on the pathway to full scientific productivity.

In a letter to Dierker, David Freeman of Oak Ridge National Laboratory, the ARR team lead, said, "The ARR Team believes that the facility, documentation, and personnel are in place and ready to transition into routine operations in a safe and environmentally acceptable manner."

Congratulations streamed in as the momentous news was shared with the Lab and the larger scientific community.

"It has been a long and challenging road, but one which you and the larger team have navigated very successfully," said Brookhaven National Laboratory Director Doon Gibbs in a note to Dierker. "On behalf of the Lab, thank you for your unwavering commitment and effort. There is much remaining to do, both to complete the project and start a world-class science program. It is a very exciting and important time for the Lab."

The next steps for NSLS-II project staff include completing commissioning activities, continuing assembly of the first set of experimental stations (beamlines), and the official opening of NSLS-II for scientific research, expected to occur later this year.

NSLS-II will support the Department of Energy's scientific mission by providing the most advanced tools for discovery-class science in condensed matter and materials science, physics, chemistry, and biology-science that ultimately will enhance national and energy security and help drive abundant, safe, and clean energy technologies.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project