Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthesis of Nanostructures with Controlled Shape, Size in Iran

Abstract:
Iranian researchers from Kashan University in association with their colleagues from Isfahan University of Technology succeeded in the synthesis of hydroxyapatite nanostructure through a new yet very simple method.

Synthesis of Nanostructures with Controlled Shape, Size in Iran

Tehran, Iran | Posted on September 22nd, 2014

n this method, the shape and size of synthesized nanostructured particles can be easily controlled. Energy and time-saving are among the advantages of this method.

Numerous methods have so far been reported for the production of hydroxyapatite due to the wide applications of this material. However, this research tries to present a simple method that can control the shape and size of hydroxyapatite particles at nanometric scale. In addition, the temperature and time of reaction are relatively low in comparison with those of other reported methods.

Dr. Fatemeh Mohandes, one of the researchers, explained about the research, and said, "The main purpose of the research was to control the shape and size of hydroxyapatite nanostructures. Various methods and surfactants have so far been used to reach this goal. However, we succeeded in the production of hydroxyapatite nanostructures, including nanorods and nanoparticles, in this method by using Schiff-base organic compounds. The use of Schiff-base compounds had not been reported for the controlling of shape and size of hydroxyapatite nanostructures. Our research team successfully used these compounds under the supervision of Prof. Mas'ood Salavati Niyasari."

Results obtained from the characterization of the product showed that the synthesized materials have high purity and efficiency. Studying the bioactivity of hydroxyapatite nanostructures synthesized through this method shows that one-dimensional nanostructures (nanorods) have higher biological activity in comparison with zero-dimensional nanostructures (nanoparticles).

Results of the research have been published in Ceramics International, vol. 40, issue 8-A, 2014, pp. 12227-12233.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project