Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Recruiting bacteria to be technology innovation partners:

Biofilms are communities of bacteria (E. coli are depicted here in purple) ensconced in a slimy, but extremely tough matrix of extracellular material.

Credit: Harvard's Wyss Institute
Biofilms are communities of bacteria (E. coli are depicted here in purple) ensconced in a slimy, but extremely tough matrix of extracellular material.

Credit: Harvard's Wyss Institute

Abstract:
For most people biofilms conjure up images of slippery stones in a streambed and dirty drains. While there are plenty of "bad" biofilms around - they even cause pesky dental plaque and a host of other more serious medical problems - a team at the Wyss Institute for Biologically Inspired Engineering at Harvard University sees biofilms as a robust new platform for designer nanomaterials that could clean up polluted rivers, manufacture pharmaceutical products, fabricate new textiles, and more.

Recruiting bacteria to be technology innovation partners:

Cambridge, MA | Posted on September 17th, 2014

In short, they want to give biofilms a facelift, and have developed a novel protein engineering system called BIND to do so. Using BIND, which stands for Biofilm-Integrated Nanofiber Display, the team said biofilms could be tomorrow's living foundries for the large-scale production of biomaterials that can be programmed to provide functions not possible with existing materials. They have reported the proof-of-concept in Nature Communications .

"Most biofilm-related research today focuses on how to get rid of biofilms, but we demonstrate here that we can engineer these super tough natural materials to perform specific functions -- so we may want them around in specific quantities and for specific applications," said Wyss Institute Core Faculty member Neel Joshi, Ph.D., the study's senior author. Joshi is also an Associate Professor of Chemical and Biological Engineering at the Harvard School of Engineering and Applied Sciences (SEAS).

Biofilms also self-assemble and self-heal. "If they get damaged, they grow right back because they are living tissues," said lead author Peter Nguyen, Ph.D., a Postdoctoral Fellow at the Wyss Institute and Harvard SEAS.

Biofilms are communities of bacteria ensconced in a slimy, but extremely tough, matrix of extracellular material composed of sugars, proteins, genetic material and more. During biofilm formation individual bacteria pump out proteins that self-assemble outside the cell - creating tangled networks of fibers that essentially glue the cells together into communities that keep the bacteria safer than they would be on their own.

Interest in biofilm engineering is skyrocketing, and while several other teams have recently developed genetic tools to control biofilm formation, Joshi's team altered the composition of the extracellular material itself - essentially turning it into a self-replicating production platform to churn out whatever material they wish to produce.

"Until recently there was not enough cooperation between synthetic biologists and biomaterials researchers to exploit the synthetic potential of biofilms this way. We are trying to bridge that gap," Joshi said.

The team genetically fused a protein with a particular desired function - for example, one known to adhere to steel - onto a small protein called CsgA that is already produced by E. coli bacteria. The appended domain then went along for the ride through the natural process by which CsgA gets secreted outside the cell, where it self-assembled into supertough proteins called amyloid nanofibers. These amyloid proteins retained the functionality of the added protein - ensuring in this case that the biofilm adhered to steel.

Amyloid proteins traditionally get a bad rap for their role in causing tremendous health challenges such as Alzheimer's disease, but in this case their role is fundamental to making BIND so robust. These amyloids can spontaneously assemble into fibers that, by weight, are stronger than steel and stiffer than silk.

"We are excited about the versatility of the method, too," Joshi said. The team demonstrated an ability to fuse 12 different proteins to the CsgA protein, with widely varying sequences and lengths. This means in principle that they can use this technology to display virtually any protein sequence - a significant feature because proteins perform an array of impressive functions from binding to foreign particles to carrying out chemical reactions, transmitting signals, providing structural support, and transporting or storing certain molecules.

Not only can these functions be programmed into the biofilm one at a time, but they can be combined to create multifunctional biofilms as well.

The concept of the microbial factory is not a new one, but for the first time it is being applied to materials, as opposed to soluble molecules like drugs or fuels. "We are essentially programming the cells to be fabrication plants," Joshi said. "They don't just produce a raw material as a building block, they orchestrate the assembly of those blocks into higher order structures and maintain that structure over time."

"The foundational work Neel and his team are doing with biofilms offers a glimpse into a much more environmentally sustainable future where gargantuan factories are reduced to the size of a cell that we can program to manufacture new materials that meet our everyday needs - from textiles to energy and environmental clean-up," said Wyss Institute Founding Director Don Ingber, M.D., Ph.D.

For now the team has demonstrated the ability to program E. coli biofilms that stick to certain substrates, such as steel, others that can immobilize an array of proteins or promote the templating of silver for construction of nanowires.

###

This work was primarily funded by the Wyss Institute for Biologically Inspired Engineering at Harvard University. The authors also acknowledge support from the National Science Foundation Graduate Research Fellowship and the A*STAR National Science Graduate Fellowship.

####

About Wyss Institute for Biologically Inspired Engineering at Harvard
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among all of Harvard's Schools, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, and the University of Zurich, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

The Harvard School of Engineering and Applied Sciences (SEAS) serves as the connector and integrator of Harvard's teaching and research efforts in engineering, applied sciences, and technology. Through collaboration with researchers from all parts of Harvard, other universities, and corporate and foundational partners, we bring discovery and innovation directly to bear on improving human life and society.

For more information, please click here

Contacts:
Kristen Kusek

617-432-8266

Copyright © Wyss Institute for Biologically Inspired Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project