Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties

Abstract:
Nearly 20 years ago researcher Alex Zettl of the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) synthesized in his lab a new material never before seen by nature: boron nitride nanotubes, the strongest, lightest, most thermally conducting, and most chemically resistant fiber known to exist. Now a startup has licensed this technology with the aim of manufacturing boron nitride nanotubes for commercial use.

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties

Berkeley, CA | Posted on September 13th, 2014

Berkeley Lab has licensed the invention to BNNT LLC, a startup company based in Newport News, Virginia. BNNT has also developed its own technology for producing high-quality nanotubes in large quantities and envisions it for eventual uses in space, satellites, jet engines, cancer therapies, and a wide range of other applications. Its manufacturing technique was developed jointly by the Department of Energy's Jefferson Lab, NASA's Langley Research Center, and the National Institute of Aerospace.

"This shows that resources out of the national infrastructure—Berkeley Lab, Jefferson Lab, and NASA—are supporting startups and putting new technologies in the marketplace," said Roy Whitney, president and CEO of BNNT. "It's very exciting, and could be transformative."

Boron nitride nanotubes were first theorized by Berkeley Lab materials scientist Marvin Cohen in 1994 and made in the lab the following year by Zettl. Whitney said the challenge has been to make long, defect-free nanotubes in large quantities. "In the world of nanotubes quality is a very big deal," he said.

Whitney says BNNT's nanotubes, which look like cotton balls, are 100 times stronger than steel and stable to up to 900 degrees Celsius. Nanotubes are composed of a sheet of material that may be a single atom or a few atoms thick and rolled into a thin cylinder. While carbon nanotubes are more prevalent, boron nitride nanotubes are highly sought after because they are as strong as carbon nanotubes, but they have a much higher resistance to heat, high voltage, and neutron radiation.

Initially, BNNT's customers will be researchers in academic, commercial, or government labs. "If you want to explore the properties of this material, you just really haven't been able to buy it," Whitney said. "Our main customers will be research labs for some time. As people learn what to do with it, they will want to incorporate it into very high-end products."

Whitney said he believed that boron nitride nanotubes will at some point complement the high-end of the market for carbon nanotubes, which are being used in thousands of uses.

"We are excited about this opportunity because boron nitride nanotubes will now take their place with carbon nanotubes for driving innovation in science and industry," said Elsie Quaite-Randall, Berkeley Lab's Chief Technology Transfer Officer and head of the Innovation Partnerships Office.iu

####

For more information, please click here

Contacts:
Julie Chao
(510) 486-6491

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project