Home > Press > New knowledge of cannabis paves the way for drug development
![]() |
Abstract:
Revolutionary nanotechnology method could help improve the development of new medicine and reduce costs. Researchers from the Nano-Science Center and the Department of Chemistry at the University of Copenhagen have developed a new screening method that makes it possible to study cell membrane proteins that bind drugs, such as cannabis and adrenaline, while reducing the consumption of precious samples by a billion times.
About 40% of all medicines used today work through the so-called "G protein-coupled receptors". These receptors react to changes in the cell environment, for example, to increased amounts of chemicals like cannabis, adrenaline or the medications we take and are therefore of paramount importance to the pharmaceutical industry.
- "There is a lot of attention on research into "G protein-coupled receptors", because they have a key roll in recognizing and binding different substances. Our new method is of interest to the industry because it can contribute to faster and cheaper drug development", explains Professor Dimitrios Stamou, who heads the Nanomedicine research group at the Nano-Science Center, where the method has been developed. The new method is described in a publication at the esteemed scientific journal Nature Methods.
Cheaper to test and develop medicine
The new method will reduce dramatically the use of precious membrane protein samples. Traditionally, you test a medicinal substance by using small drops of a sample containing the protein that the medicine binds to. If you look closely enough however, each drop is composed of thousands of billions of small nano-containers containing the isolated proteins. Until now, it has been assumed that all of these nano-containers are identical. But it turns out this is not the case and that is why researchers can use a billion times smaller samples for testing drug candidates than hitherto.
- "We have discovered that each one of the countless nano-containers is unique. Our method allows us to collect information about each individual nano-container. We can use this information to construct high-throughput screens, where you can, for example, test how medicinal drugs bind G protein-coupled receptors", explains Signe Mathiasen, who is first author of the paper describing the screening method in Nature Methods. Signe Mathiasen has worked on developing a screening method over the last four years at the University of Copenhagen, where she wrote her PhD thesis research project under the supervision of Professor Stamou.
The development of the new nanotechnology method was supported by the Danish Strategic Research Council and the Lundbeck Foundation.
####
For more information, please click here
Contacts:
Rikke Bøyesen
452-875-0413
Professor Dimitrios Stamou
Mobil: +45 24 98 16 58
Copyright © University of Copenhagen
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |