Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic nanocubes self-assemble into helical superstructures

This image depicts an illustration of helices.

Credit: UIC/Megan Strand
This image depicts an illustration of helices.

Credit: UIC/Megan Strand

Abstract:
Materials made from nanoparticles hold promise for myriad applications, from improved solar energy production to perfect touch screens. The challenge in creating these wonder-materials is organizing the nanoparticles into orderly arrangements.

Magnetic nanocubes self-assemble into helical superstructures

Chicago, IL | Posted on September 4th, 2014

Nanoparticles of magnetite, the most abundant magnetic material on earth, are found in living organisms from bacteria to birds. Nanocrystals of magnetite self-assemble into fine compass needles in the organism that help it to navigate.

Collaborating with nanochemists led by Rafal Klajn at the Weizmann Institute of Science in Israel, who found that magnetite nanocubes can self-assemble into helical superstructures under certain conditions, University of Illinois at Chicago theoretical chemist Petr Kral and his students simulated the phenomenon and explained the conditions under which it can occur. The joint study is online in Science Express in advance of print in the Sept. 5 issue of Science.

The Weizmann researchers dissolved the nanocrystals and exposed the solution to an external magnetic field. As the solution evaporated, helical chains of nanoparticles formed. Surprisingly, the spiral helices were chiral -- that is, either left- or right-handed -- despite the fact that the nanoparticles themselves are not chiral. Densely packed assemblies of helices tended to adopt the same handedness.

Kral's UIC team modeled the self-assembly to determine how helices formed in their collaborators' experiments -- and why the helices had chirality.

They found that the self-assembly into chiral helices is the result of the competing forces acting on them — Zeeman force from the external magnetic field, dipole-dipole magnetic force, magneto-anisotropic directional force, weakly attractive van der Waals forces, and others. The chemistry of the nanoparticle ligands, the solvent, and temperature may also play a role.

In the presence of an external magnetic field, the superparamagnetic nanocubes — which are randomly magnetic and can flip with temperature changes — became tiny magnets with different symmetries of the competing forces acting between them. As a result, when two cubes are face-to-face, they tend to tilt with respect to each other, forming a small angle to the right or left — the seed of a chiral helix, as more nanocubes line up with the first two.

Kral's analysis used a Monte Carlo computer algorithm, which relies on repeated random sampling, running simulations many times over.

"We had to write a new, efficient Monte Carlo computer code describing all the necessary terms, all the values, and then explain how the highly unusual behavior that Klajn observed - the helices' self-assembly - happens," Kral said.

###

Gurvinder Singh of the Weizmann Institute is first author of the paper. Elijah Gelman of the Weizmann Institute, and Henry Chan, Artem Baskin and Nikita Repnin of UIC are co-authors on the study.

The work was supported by the Israel Science Foundation grant 1463/11, the G. M. J. Schmidt-Minerva Center for Supramolecular Architectures, the Minerva Foundation with funding from the Federal German Ministry for Education and Research, National Science Foundation Division of Materials Research grant 1309765 and the American Chemical Society Petroleum Research Fund grant 53062-ND6.

####

For more information, please click here

Contacts:
Jeanne Galatzer-Levy

312-996-1583

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project