Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds

This small device developed at Los Alamos National Laboratory uses the truly random spin of light particles as defined by laws of quantum mechanics to generate a random number for use in a cryptographic key that can be used to securely transmit information between two parties. Quantum key distribution represents a foolproof cryptography method that may now become available to the general public, thanks to a licensing agreement between Los Alamos and Whitewood Encryption Systems, LLC. Los Alamos scientist developed their particular method for quantum cryptography after two decades of rigorous testing inside of the nation's premier national security science laboratory. Photo credit: Los Alamos National Laboratory
This small device developed at Los Alamos National Laboratory uses the truly random spin of light particles as defined by laws of quantum mechanics to generate a random number for use in a cryptographic key that can be used to securely transmit information between two parties. Quantum key distribution represents a foolproof cryptography method that may now become available to the general public, thanks to a licensing agreement between Los Alamos and Whitewood Encryption Systems, LLC. Los Alamos scientist developed their particular method for quantum cryptography after two decades of rigorous testing inside of the nation's premier national security science laboratory.

Photo credit: Los Alamos National Laboratory

Abstract:
The largest information technology agreement ever signed by Los Alamos National Laboratory brings the potential for truly secure data encryption to the marketplace after nearly 20 years of development at the nation's premier national-security science laboratory.

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds

Los Alamos, NM | Posted on September 2nd, 2014

"Quantum systems represent the best hope for truly secure data encryption because they store or transmit information in ways that are unbreakable by conventional cryptographic methods," said Duncan McBranch, Chief Technology Officer at Los Alamos National Laboratory. "This licensing agreement with Whitewood Encryption Systems, Inc. is historic in that it takes our groundbreaking technical work that was developed over two decades into commercial encryption applications."

By harnessing the quantum properties of light for generating random numbers, and creating cryptographic keys with lightning speed, the technology enables a completely new commercial platform for real-time encryption at high data rates. For the first time, ordinary citizens and companies will be able to use cryptographic systems that have only been the subject of experiments in the world's most advanced physics and computing laboratories for real-world applications.

If implemented on a wide scale, quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer.

The technology at the heart of the agreement is a compact random-number-generation technology that creates cryptographic keys based on the truly random polarization state of light particles known as photons. Because the randomness of photon polarization is based on quantum mechanics, an adversary cannot predict the outcome of this random number generator. This represents a vast improvement over current "random-number" generators that are based on mathematical formulas that can be broken by a computer with sufficient speed and power.

Moreover, any attempt by a third party to eavesdrop on the secure communications between quantum key holders disrupts the quantum system itself, so communication can be aborted and the snooper detected before any data is stolen.

The Los Alamos technology is simple and compact enough that it could be made into a unit comparable to a computer thumb drive or compact data-card reader. Units could be manufactured at extremely low cost, putting them within easy retail range of ordinary electronics consumers.

Whitewood Encryption Systems, Inc. of Boston, Mass., is a wholly owned subsidiary of Allied Minds. The agreement provides exclusive license for several Los Alamos-created quantum-encryption patents in exchange for consideration in the form of licensing fees. "Whitewood aims to address one of the most difficult problems in securing modern communications: scalability—meeting the need for low-cost, low-latency, high-security systems that can effectively service increasingly complex data security needs," said John Serafini, Vice President at Allied Minds. "Whitewood's foundation in quantum mechanics makes it uniquely suited to satisfy demand for the encryption of data both at rest as well as in transit, and in the mass quantity and high-throughput requirements of today's digital environment."

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
JAMES E. RICKMAN
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project